7 resultados para STRUCTURE ANALYSIS
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This is a research B for the University of Bologna. The course is the civil engineering LAUREA MAGISTRALE at UNIBO. The main purpose of this research is to promote another way of explaining, analyzing and presenting some civil engineering aspects to the students worldwide by theory, modeling and photos. The basic idea is divided into three steps. The first one is to present and analyze the theoretical parts. So a detailed analysis of the theory combined with theorems, explanations, examples and exercises will cover this step. At the second, a model will make clear all these parts that were discussed in the theory by showing how the structures work or fail. The modeling is able to present the behavior of many elements, in scale which we use in the real structures. After these two steps an interesting exhibition of photos from the real world with comments will give the chance to the engineers to observe all these theoretical and modeling-laboratory staff in many different cases. For example many civil engineers in the world may know about the air pressure on the structures but many of them have never seen the extraordinary behavior of the bridge of Tacoma ‘dancing with the air’. At this point I would like to say that what I have done is not a book, but a research of how this ‘3 step’ presentation or explanation of some mechanical characteristics could be helpful. I know that my research is something different and new and in my opinion is very important because it helps students to go deeper in the science and also gives new ideas and inspirations. This way of teaching can be used at all lessons especially at the technical. Hope that one day all the books will adopt this kind of presentation.
Resumo:
The present study deal with the population structure and connectivity of the Mediterranean endemic starry ray Raja asterias (Delaroche, 1809) in the Western and Eastern Mediterranean basin. A panel of eight microsatellite loci which cross-amplify in Rajidae (El Nagar, 2010) was used to assess population connectivity and structure. Those aims were investigated by analyzing the genetic variation of 9 population sample for a total of 185 individuals collected during past scientific surveys (MEDITS, GRUND), commercial trawling and also directly at fish markets. The purpose of this thesis is to estimate the genetic divergence occurring between the Mediterranean populations and, in particular, to assess the presence of any barrier (geographic, hydrogeological and biological) to gene flow for this species. Different statistical approaches were performed to reach this aim evaluating both the genetic diversity (nucleotide diversity, allelic richness, observed and expected heterozygosity and Hardy-Weinberg equilibrium test) and the population differentiation patterns (pairwise Fst estimated and population structure analysis). The results obtained from the analysis of the microsatellite dataset suggest a geographic and genetic separation between the starry ray populations of the Mediterranean basin into three or four distinct groups: Western and Eastern Mediterranean basins and Sicilian coast always clustering as an independent group and Algeria which could be or not considered another separate group. The data were discussed from both an evolutionary and a conservation point of view and in relation to previous results obtained by the analysis of mitochondrial marker. A comparison with other Mediterranean demersal skate species was performed in order to better contextualise our results. Finally, our results could offer useful information to protect vulnerable species as R. asterias and developing effective conservation plans in the Mediterranean.
Resumo:
In this study the population structure and connectivity of the Mediterranean and Atlantic Raja clavata (L., 1758) were investigated by analyzing the genetic variation of six population samples (N = 144) at seven nuclear microsatellite loci. The genetic dataset was generated by selecting population samples available in the tissue databases of the GenoDREAM laboratory (University of Bologna) and of the Department of Life Sciences and Environment (University of Cagliari), all collected during past scientific surveys (MEDITS, GRUND) from different geographical locations in the Mediterranean basin and North-east Atlantic sea, as North Sea, Sardinian coasts, Tuscany coasts and Cyprus Island. This thesis deals with to estimate the genetic diversity and differentiation among 6 geographical samples, in particular, to assess the presence of any barrier (geographic, hydrogeological or biological) to gene flow evaluating both the genetic diversity (nucleotide diversity, observed and expected heterozygosity, Hardy- Weinberg equilibrium analysis) and population differentiation (Fst estimates, population structure analysis). In addition to molecular analysis, quantitative representation and statistical analysis of morphological individuals shape are performed using geometric morphometrics methods and statistical tests. Geometric coordinates call landmarks are fixed in 158 individuals belonging to two population samples of Raja clavata and in population samples of closely related species, Raja straeleni (cryptic sibling) and Raja asterias, to assess significant morphological differences at multiple taxonomic levels. The results obtained from the analysis of the microsatellite dataset suggested a geographic and genetic separation between populations from Central-Western and Eastern Mediterranean basins. Furthermore, the analysis also showed that there was no separation between geographic samples from North Atlantic Ocean and central-Western Mediterranean, grouping them to a panmictic population. The Landmark-based geometric morphometry method results showed significant differences of body shape able to discriminate taxa at tested levels (from species to populations).
Resumo:
Laterally loaded piles are a typical situation for a large number of cases in which deep foundations are used. Dissertation herein reported, is a focus upon the numerical simulation of laterally loaded piles. In the first chapter the best model settings are largely discussed, so a clear idea about the effects of interface adoption, model dimension, refinement cluster and mesh coarseness is reached. At a second stage, there are three distinct parametric analyses, in which the model response sensibility is studied for variation of interface reduction factor, Eps50 and tensile cut-off. In addition, the adoption of an advanced soil model is analysed (NGI-ADP). This was done in order to use the complex behaviour (different undrained shear strengths are involved) that governs the resisting process of clay under short time static loads. Once set a definitive model, a series of analyses has been carried out with the objective of defining the resistance-deflection (P-y) curves for Plaxis3D (2013) data. Major results of a large number of comparisons made with curves from API (America Petroleum Institute) recommendation are that the empirical curves have almost the same ultimate resistance but a bigger initial stiffness. In the second part of the thesis a simplified structural preliminary design of a jacket structure has been carried out to evaluate the environmental forces that act on it and on its piles foundation. Finally, pile lateral response is studied using the empirical curves.
Resumo:
All the structures designed by engineers are vulnerable to natural disasters including floods and earthquakes. The energy released during strong ground motions should be dissipated by structural elements. Before 1990’s, this energy was expected to be dissipated through the beams and columns which at the same time were a part of gravity-load-resisting system. However, the main disadvantage of this idea was that gravity-resisting-frame was not repairable. Hence, during 1990’s, the idea of designing passive energy dissipation systems, including dampers, emerged. At the beginning, main problem was lack of guidelines for passive energy dissipation systems. Although till 2000 many guidelines and procedures where published, yet most of them were based on complicated analysis which was not so convenient for engineers and practitioners. In order to solve this problem recently some alternative design methods are proposed including 1. Lopez Garcia (2001) simple procedure for optimal damper configuration in MDOF structures 2. Christopoulos and Filiatrault (2006) trial and error procedure 3. Silvestri et al. (2010) Five-Step Method. 4. Palermo et al. (2015) Direct Five-Step Method. 5. Palermo et al. (2016) Simplified Equivalent Static Analysis (ESA). In this study, effectiveness and differences between last three alternative methods have been evaluated.
Resumo:
An analysis and a subsequent solution is here presented. This document is about a groin design able to contrast the erosion actions given by waves in Lido di Dante. Advantages will be visible also for Fiumi Uniti's inlet, in the north side of the shoreline. Beach future progression and growth will be subjected to monitoring actions in the years after groin construction. The resulting effects of the design will have a positive impact not only on the local fauna and environment, but also, a naturalistic appeal will increase making new type of tourists coming not only for recreational purposes. The design phase is focused on possible design alternatives and their features. Particular interest is given to scouring phenomena all around the groin after its construction. Groin effects will impact not only on its south side, instead they will cause an intense erosion process on the downdrift front. Here, many fishing hut would be in danger, thus a beach revetment structure is needed to avoid any future criticality. In addiction, a numerical model based on a generalized shoreline change numerical model, also known as GENESIS, has been applied to the study area in order to perform a simplistic analysis of the shoreline and its future morphology. Critical zones are visible in proximity of the Fiumi Uniti's river inlet, where currents from the sea and the river itself start the erosion process that is affecting Lido di Dante since mid '80s, or even before. The model is affected by several assumptions that make results not to be interpreted as a real future trend of the shore. Instead the model allows the user to have a more clear view about critical processes induced by monochromatic inputed waves. In conclusion, the thesis introduce a wide analysis on a complex erosion process that is affecting many shoreline nowadays. A groin design is seen as a hard solution it is considered to be the only means able to decrease the rate of erosion.
Root cause analysis applied to a finite element model's refinement of a negative stiffness structure
Resumo:
Negative Stiffness Structures are mechanical systems that require a decrease in the applied force to generate an increase in displacement. They are structures that possess special characteristics such as snap-through and bi-stability. All of these features make them particularly suitable for different applications, such as shock-absorption, vibration isolation and damping. From this point of view, they have risen awareness of their characteristics and, in order to match them to the application needed, a numerical simulation is of great interest. In this regard, this thesis is a continuation of previous studies in a circular negative stiffness structure and aims at refine the numerical model by presenting a new solution. To that end, an investigation procedure is needed. Amongst all of the methods available, root cause analysis was the chosen one to perform the investigation since it provides a clear view of the problem under analysis and a categorization of all the causes behind it. As a result of the cause-effect analysis, the main causes that have influence on the numerical results were obtained. Once all of the causes were listed, solutions to them were proposed and it led to a new numerical model. The numerical model proposed was of nonlinear type of analysis with hexagonal elements and a hyperelastic material model. The results were analyzed through force-displacement curves, allowing for the visualization of the structure’s energy recovery. When compared to the results obtained from the experimental part, it is evident that the trend is similar and the negative stiffness behaviour is present.