5 resultados para STOCHASTIC MODELS
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In this work we address the problem of finding formulas for efficient and reliable analytical approximation for the calculation of forward implied volatility in LSV models, a problem which is reduced to the calculation of option prices as an expansion of the price of the same financial asset in a Black-Scholes dynamic. Our approach involves an expansion of the differential operator, whose solution represents the price in local stochastic volatility dynamics. Further calculations then allow to obtain an expansion of the implied volatility without the aid of any special function or expensive from the computational point of view, in order to obtain explicit formulas fast to calculate but also as accurate as possible.
Resumo:
In recent years is becoming increasingly important to handle credit risk. Credit risk is the risk associated with the possibility of bankruptcy. More precisely, if a derivative provides for a payment at cert time T but before that time the counterparty defaults, at maturity the payment cannot be effectively performed, so the owner of the contract loses it entirely or a part of it. It means that the payoff of the derivative, and consequently its price, depends on the underlying of the basic derivative and on the risk of bankruptcy of the counterparty. To value and to hedge credit risk in a consistent way, one needs to develop a quantitative model. We have studied analytical approximation formulas and numerical methods such as Monte Carlo method in order to calculate the price of a bond. We have illustrated how to obtain fast and accurate pricing approximations by expanding the drift and diffusion as a Taylor series and we have compared the second and third order approximation of the Bond and Call price with an accurate Monte Carlo simulation. We have analysed JDCEV model with constant or stochastic interest rate. We have provided numerical examples that illustrate the effectiveness and versatility of our methods. We have used Wolfram Mathematica and Matlab.
Resumo:
Scopo della modellizzazione delle stringhe di DNA è la formulazione di modelli matematici che generano sequenze di basi azotate compatibili con il genoma esistente. In questa tesi si prendono in esame quei modelli matematici che conservano un'importante proprietà, scoperta nel 1952 dal biochimico Erwin Chargaff, chiamata oggi "seconda regola di Chargaff". I modelli matematici che tengono conto delle simmetrie di Chargaff si dividono principalmente in due filoni: uno la ritiene un risultato dell'evoluzione sul genoma, mentre l'altro la ipotizza peculiare di un genoma primitivo e non intaccata dalle modifiche apportate dall'evoluzione. Questa tesi si propone di analizzare un modello del secondo tipo. In particolare ci siamo ispirati al modello definito da da Sobottka e Hart. Dopo un'analisi critica e lo studio del lavoro degli autori, abbiamo esteso il modello ad un più ampio insieme di casi. Abbiamo utilizzato processi stocastici come Bernoulli-scheme e catene di Markov per costruire una possibile generalizzazione della struttura proposta nell'articolo, analizzando le condizioni che implicano la validità della regola di Chargaff. I modelli esaminati sono costituiti da semplici processi stazionari o concatenazioni di processi stazionari. Nel primo capitolo vengono introdotte alcune nozioni di biologia. Nel secondo si fa una descrizione critica e prospettica del modello proposto da Sobottka e Hart, introducendo le definizioni formali per il caso generale presentato nel terzo capitolo, dove si sviluppa l'apparato teorico del modello generale.
Resumo:
In questa tesi si è studiato l’insorgere di eventi critici in un semplice modello neurale del tipo Integrate and Fire, basato su processi dinamici stocastici markoviani definiti su una rete. Il segnale neurale elettrico è stato modellato da un flusso di particelle. Si è concentrata l’attenzione sulla fase transiente del sistema, cercando di identificare fenomeni simili alla sincronizzazione neurale, la quale può essere considerata un evento critico. Sono state studiate reti particolarmente semplici, trovando che il modello proposto ha la capacità di produrre effetti "a cascata" nell’attività neurale, dovuti a Self Organized Criticality (auto organizzazione del sistema in stati instabili); questi effetti non vengono invece osservati in Random Walks sulle stesse reti. Si è visto che un piccolo stimolo random è capace di generare nell’attività della rete delle fluttuazioni notevoli, in particolar modo se il sistema si trova in una fase al limite dell’equilibrio. I picchi di attività così rilevati sono stati interpretati come valanghe di segnale neurale, fenomeno riconducibile alla sincronizzazione.
Resumo:
In this thesis we present a mathematical formulation of the interaction between microorganisms such as bacteria or amoebae and chemicals, often produced by the organisms themselves. This interaction is called chemotaxis and leads to cellular aggregation. We derive some models to describe chemotaxis. The first is the pioneristic Keller-Segel parabolic-parabolic model and it is derived by two different frameworks: a macroscopic perspective and a microscopic perspective, in which we start with a stochastic differential equation and we perform a mean-field approximation. This parabolic model may be generalized by the introduction of a degenerate diffusion parameter, which depends on the density itself via a power law. Then we derive a model for chemotaxis based on Cattaneo's law of heat propagation with finite speed, which is a hyperbolic model. The last model proposed here is a hydrodynamic model, which takes into account the inertia of the system by a friction force. In the limit of strong friction, the model reduces to the parabolic model, whereas in the limit of weak friction, we recover a hyperbolic model. Finally, we analyze the instability condition, which is the condition that leads to aggregation, and we describe the different kinds of aggregates we may obtain: the parabolic models lead to clusters or peaks whereas the hyperbolic models lead to the formation of network patterns or filaments. Moreover, we discuss the analogy between bacterial colonies and self gravitating systems by comparing the chemotactic collapse and the gravitational collapse (Jeans instability).