7 resultados para STELLAR ROTATION
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
A recent integral-field spectroscopic (IFS) survey, the MASSIVE survey (Ma et al. 2014), observed the 116 most massive (MK < −25.3 mag, stellar mass M∗ > 10^11.6 M⊙) early-type galaxies (ETGs) within 108 Mpc, out to radii as large as 40 kpc, that correspond to ∼ 2 − 3 effective radii (Re). One of the major findings of the MASSIVE survey is that the galaxy sample is split nearly equally among three groups showing three different velocity dispersion profiles σ(R) outer of a radius ∼ 5 kpc (falling, flat and rising with radius). The purpose of this thesis is to model the kinematic profiles of six ETGs included in the MASSIVE survey and representative of the three observed σ(R) shapes, with the aim of investigating their dynamical structure. Models for the chosen galaxies are built using the numerical code JASMINE (Posacki, Pellegrini, and Ciotti 2013). The code produces models of axisymmetric galaxies, based on the solution of the Jeans equations for a multicomponent gravitational potential (supermassive black hole, stars and dark matter halo). With the aim of having a good agreement between the kinematics obtained from the Jeans equations, and the observed σ and rotation velocity V of MASSIVE (Veale et al. 2016, 2018), I derived constraints on the dark matter distribution and orbital anisotropy. This work suggests a trend of the dark matter amount and distribution with the shape of the velocity dispersion profiles in the outer regions: the models of galaxies with flat or rising velocity dispersion profiles show higher dark matter fractions fDM both within 1 Re and 5 Re. Orbital anisotropy alone cannot account for the different observed trends of σ(R) and has a minor effect compared to variations of the mass profile. Galaxies with similar stellar mass M∗ that show different velocity dispersion profiles (from falling to rising) are successfully modelled with a variation of the halo mass Mh.
Resumo:
This thesis concerns the study of the variable stars and resolved stellar populations in four recently discovered dSphs, namely, Hercules and Ursa Major I (UMa I), which are UFD satellites of the MW; Andromeda XIX (And XIX) and Andromeda XXI (And XXI), which are satellites of M31. The main aim is to obtain detailed informations on the properties (age, metallicity, distance, and Oosterhoff type) of the stellar populations in these galaxies, to compare them with those of other satellites around the MW and M31, both ''classical'' dSphs and UFDs. The observables used to achieve these goals are the pulsating variables, especially the RR Lyrae stars, and the color magnitude diagram (CMD) of the resolved stellar populations. In particular, for UMa I, we combined B, V time-series observations from four different ground-based telescopes (Cassini, TLS, TT1 and Subaru) and for Hercules, we used archival data acquired with the Advanced Camera for Surveys (ACS) on board the HST. We used, instead B and V times-series photometry obtained with the Large Binocular Telescope (LBT) for And XIX and And XXI .
Resumo:
Stellar occultations are the most accurate Earth-based astronomy technique to obtain the lateral position of celestial bodies, in the case of natural satellites, their accuracy also depends on the central body to which the satellite orbits. The main goal of this thesis work is to analyze if and how very long baseline interferometry (VLBI) measurements of a body like Jupiter can be used in support to stellar occultations of its natural satellites by reducing the planetary uncertainty at the time of the occultation. In particular, we analyzed the events of the stellar occultations of Callisto (15.01.2024) and Io (02.04.2021). The stellar occultation of Callisto has been predicted and simulated using the stellar occultation reduction analysis (SORA) toolkit while the stellar occultation of Io has been already studied by Morgado et al. We then simulated the VLBI data of Jupiter according to the current JUNO trajectories. The required observation were then used as input of an estimation to which then we performed a covariance analysis on the estimated parameters to retrieve the formal errors (1 − σ uncertainties) at each epoch of the propagation. The results show that the addition of the VLBI slightly improves the uncertainty of Callisto even when Jupiter knowledge is worse while for Io we observed that the VLBI data is especially crucial in the scenario of an a priori uncertainty in Jupiter state of about 10km. Here we can have improvements of the estimated initial states of Io of about 70m, 230m and 900m to the radial, along-track and cross-track directions respectively. Moreover, we have also obtained the propagated errors of the two moons in terms of right ascension and declination which both show uncertainties in the mas level at the occultation time. Finally, we simulated Io and Europa together and we observed that at the time of the stellar occultation of Europa the along-track component of Io is constrained, confirming the coupling between the two inner moons.
Resumo:
Within the classification of orbits in axisymmetric stellar systems, we present a new algorithm able to automatically classify the orbits according to their nature. The algorithm involves the application of the correlation integral method to the surface of section of the orbit; fitting the cumulative distribution function built with the consequents in the surface of section of the orbit, we can obtain the value of its logarithmic slope m which is directly related to the orbit’s nature: for slopes m ≈ 1 we expect the orbit to be regular, for slopes m ≈ 2 we expect it to be chaotic. With this method we have a fast and reliable way to classify orbits and, furthermore, we provide an analytical expression of the probability that an orbit is regular or chaotic given the logarithmic slope m of its correlation integral. Although this method works statistically well, the underlying algorithm can fail in some cases, misclassifying individual orbits under some peculiar circumstances. The performance of the algorithm benefits from a rich sampling of the traces of the SoS, which can be obtained with long numerical integration of orbits. Finally we note that the algorithm does not differentiate between the subtypes of regular orbits: resonantly trapped and untrapped orbits. Such distinction would be a useful feature, which we leave for future work. Since the result of the analysis is a probability linked to a Gaussian distribution, for the very definition of distribution, some orbits even if they have a certain nature are classified as belonging to the opposite class and create the probabilistic tails of the distribution. So while the method produces fair statistical results, it lacks in absolute classification precision.
Resumo:
Extra mixing at the borders of convective zones in stellar interiors takes on an important role in the chemical evolution of stars and galaxies through the transport of chemical elements towards the stellar surface: knowing the overshooting mechanism can therefore lead to a better understanding of the observed chemical abundances in stellar photospheres. The comprehension of this phenomenon is quite uncertain and currently object of many studies. In particular, concerning low mass stars, in the past decades several works highlighted a discrepancy between the observed luminosity of the Red-Giant Branch bump and its prediction from simulations, which can be fixed including overshooting at the base of the convective envelope. This work, studying the Red-Giant Branch bump and using it as a diagnostic for extra mixing processes, tries to classify two different types of overshooting, instantaneous and diffusive, using both simulations from stellar models and Globular Clusters’ data. The aim is to understand which one of the two mixing processes is the most suitable in reproducing the observed stellar behaviour and, in case both of them provide reliable results, what are the conditions under which they produce the same effects on the Red-Giant Branch bump luminosity function and are consequently indistinguishable. Finally, possible dependences of overshooting efficiency on stellar parameters, such as chemical composition, are analysed.
Resumo:
Dwarf galaxies often experience gravitational interactions from more massive companions. These interactions can deform galaxies, turn star formation on or off, or give rise to mass loss phenomena. In this thesis work we propose to study, through N-body simulations, the stellar mass loss suffered by the dwarf spheroid galaxy (dSph) Fornax orbiting in the Milky Way gravitational potential. Which is a key phenomenon to explain the mass budget problem: the Fornax globular clusters together have a stellar mass comparable to that of Fornax itself. If we look at the stellar populations which they are made of and we apply the scenarios of stellar population formation we find that, originally, they must have been >= 5 times more massive. For this reason, they must have lost or ejected stars through dynamic interactions. However, as presented in Larsen et al (2012), field stars alone are not sufficient to explain this scenario. We may assume that some of those stars fell into Fornax, and later were stripped by Milky Way. In order to study this solution we built several illustrative single component simulations, with a tabulated density model using the P07ecc orbit studied from Battaglia et al (2015). To divide the single component into stellar and dark matter components we have defined a posterior the probability function P(E), where E is the initial energy distribution of the particles. By associating each particle with a fraction of stellar mass and dark matter. In this way we built stellar density profiles without repeating simulations. We applied the method to Fornax using the profile density tables obtained in Pascale et al (2018) as observational constraints and to build the model. The results confirm the results previously obtained with less flexible models by Battaglia et al (2015). They show a stellar mass loss < 4% within 1.6 kpc and negligible within 3 kpc, too small to solve the mass budget problem.