2 resultados para SIMULATION EXPERIMENT
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Since its discovery, top quark has represented one of the most investigated field in particle physics. The aim of this thesis is the reconstruction of hadronic top with high transverse momentum (boosted) with the Template Overlap Method (TOM). Because of the high energy, the decay products of boosted tops are partially or totally overlapped and thus they are contained in a single large radius jet (fat-jet). TOM compares the internal energy distributions of the candidate fat-jet to a sample of tops obtained by a MC simulation (template). The algorithm is based on the definition of an overlap function, which quantifies the level of agreement between the fat-jet and the template, allowing an efficient discrimination of signal from the background contributions. A working point has been decided in order to obtain a signal efficiency close to 90% and a corresponding background rejection at 70%. TOM performances have been tested on MC samples in the muon channel and compared with the previous methods present in literature. All the methods will be merged in a multivariate analysis to give a global top tagging which will be included in ttbar production differential cross section performed on the data acquired in 2012 at sqrt(s)=8 TeV in high phase space region, where new physics processes could be possible. Due to its peculiarity to increase the pT, the Template Overlap Method will play a crucial role in the next data taking at sqrt(s)=13 TeV, where the almost totality of the tops will be produced at high energy, making the standard reconstruction methods inefficient.
Resumo:
The Deep Underground Neutrino Experiment is a long-baseline neutrino experiment which is under construction in the United States. It will be composed of a Near Detector system located a few hundred meters from the neutrino source at Fermilab and a far detector system composed of four multi-kt LArTPCs at Sanford Underground Research Facility in South Dakota. The experiment will measure the leptonic CP violation phase of the PMNS matrix and discriminate the ordering of neutrino masses. Additional physics goals include detection of neutrinos from supernovae collapse and search for possible proton decay. One component of the Near detector complex is the System for on-Axis Neutrino Detection apparatus, which includes GRanular Argon for Interaction of Neutrinos, a novel liquid Argon detector that aims at imaging neutrino interactions using scintillation light collected by optical system and read-out by SIPM matrix. This thesis work aims at studying the GRAIN performances as a homogeneous calorimeter, able to measure the energy deposited by charged particles in LAr through scintillation photons emitted along their path inside the vessel. The energy calibration of the liquid argon volume required to write (and validate) an efficient software for the detector response simulation to the arrival of scintillation photons.