2 resultados para SCHISTOSOMA-MANSONI PNP

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim of the present work of thesis is to synthesize new non-noble metal based complexes to be employ in redox reactions by a metal-ligand cooperative mechanism. The need of replacing toxic and expensive precious metal complexes with more available and benign metals, has led to the development of new compounds based on cobalt and iron, which are the metals investigated in this study. A carbonyl-tetrahydroborato-bis[(2-diisopropylphosphino)ethyl]amine-cobalt complex bearing a PNP-type ligand is synthesized by a three-step route. Optimization attempt of reaction route were assessed in order to lowering reaction times and solvent waste. New cobalt complex has been tested in esters hydrogenation as well as in acceptorless dehydrogenative coupling of ethanol. Other varieties of substrates were also tested in order to evaluate any possible applications. Concerning iron complex, dicarbonyl-(η4-3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)(1,3-dimethyl-ilidene)iron is synthesized by a three steps route, involving transmetallation of a silver complex, derived from an imidazolium salt, to iron complex. In order to avoid solvent waste, optimization is assessed. Studies were performed to assess activity of triscarbonyl iron precursor toward imidazolium salt and silver complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A growing interest towards new sources of energy has led in recent years to the development of a new generation of catalysts for alcohol dehydrogenative coupling (ADC). This green, atom-efficient reaction is capable of turning alcohol derivatives into higher value and chemically more attractive ester molecules, and it finds interesting applications in the transformation of the large variety of products deriving from biomass. In the present work, a new series of ruthenium-PNP pincer complexes are investigated for the transformation of 1-butanol, one of the most challenging substrates for this type of reactions, into butyl butyrate, a short-chain symmetrical ester widely used in flavor industries. Since the reaction kinetics depends on hydrogen diffusion, the study aimed at identifying proper reactor type and right catalyst concentration to avoid mass transfer interferences and to get dependable data. A comparison between catalytic activities and productivities has been made to establish the role of the different ligands bonded both to the PNP binder and to the ruthenium metal center, and hence to find the best catalyst for this type of reaction.