3 resultados para SCGE (Spatial Computable General Equilibrium) model
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Intermediate-complexity general circulation models are a fundamental tool to investigate the role of internal and external variability within the general circulation of the atmosphere and ocean. The model used in this thesis is an intermediate complexity atmospheric general circulation model (SPEEDY) coupled to a state-of-the-art modelling framework for the ocean (NEMO). We assess to which extent the model allows a realistic simulation of the most prominent natural mode of variability at interannual time scales: El-Niño Southern Oscillation (ENSO). To a good approximation, the model represents the ENSO-induced Sea Surface Temperature (SST) pattern in the equatorial Pacific, despite a cold tongue-like bias. The model underestimates (overestimates) the typical ENSO spatial variability during the winter (summer) seasons. The mid-latitude response to ENSO reveals that the typical poleward stationary Rossby wave train is reasonably well represented. The spectral decomposition of ENSO features a spectrum that lacks periodicity at high frequencies and is overly periodic at interannual timescales. We then implemented an idealised transient mean state change in the SPEEDY model. A warmer climate is simulated by an alteration of the parametrized radiative fluxes that corresponds to doubled carbon dioxide absorptivity. Results indicate that the globally averaged surface air temperature increases of 0.76 K. Regionally, the induced signal on the SST field features a significant warming over the central-western Pacific and an El-Niño-like warming in the subtropics. In general, the model features a weakening of the tropical Walker circulation and a poleward expansion of the local Hadley cell. This response is also detected in a poleward rearrangement of the tropical convective rainfall pattern. The model setting that has been here implemented provides a valid theoretical support for future studies on climate sensitivity and forced modes of variability under mean state changes.
Resumo:
Electrical energy storage is a really important issue nowadays. As electricity is not easy to be directly stored, it can be stored in other forms and converted back to electricity when needed. As a consequence, storage technologies for electricity can be classified by the form of storage, and in particular we focus on electrochemical energy storage systems, better known as electrochemical batteries. Largely the more widespread batteries are the Lead-Acid ones, in the two main types known as flooded and valve-regulated. Batteries need to be present in many important applications such as in renewable energy systems and in motor vehicles. Consequently, in order to simulate these complex electrical systems, reliable battery models are needed. Although there exist some models developed by experts of chemistry, they are too complex and not expressed in terms of electrical networks. Thus, they are not convenient for a practical use by electrical engineers, who need to interface these models with other electrical systems models, usually described by means of electrical circuits. There are many techniques available in literature by which a battery can be modeled. Starting from the Thevenin based electrical model, it can be adapted to be more reliable for Lead-Acid battery type, with the addition of a parasitic reaction branch and a parallel network. The third-order formulation of this model can be chosen, being a trustworthy general-purpose model, characterized by a good ratio between accuracy and complexity. Considering the equivalent circuit network, all the useful equations describing the battery model are discussed, and then implemented one by one in Matlab/Simulink. The model has been finally validated, and then used to simulate the battery behaviour in different typical conditions.
Resumo:
Turbulent plasmas inside tokamaks are modeled and studied using guiding center theory, applied to charged test particles, in a Hamiltonian framework. The equations of motion for the guiding center dynamics, under the conditions of a constant and uniform magnetic field and turbulent electrostatic field are derived by averaging over the fast gyroangle, for the first and second order in the guiding center potential, using invertible changes of coordinates such as Lie transforms. The equations of motion are then made dimensionless, exploiting temporal and spatial periodicities of the model chosen for the electrostatic potential. They are implemented numerically in Python. Fast Fourier Transform and its inverse are used. Improvements to the original Python scripts are made, notably the introduction of a power-law curve fitting to account for anomalous diffusion, the possibility to integrate the equations in two steps to save computational time by removing trapped trajectories, and the implementation of multicolored stroboscopic plots to distinguish between trapped and untrapped guiding centers. The post-processing of the results is made in MATLAB. The values and ranges of the parameters chosen for the simulations are selected based on numerous simulations used as feedback tools. In particular, a recurring value for the threshold to detect trapped trajectories is evidenced. Effects of the Larmor radius, the amplitude of the guiding center potential and the intensity of its second order term are studied by analyzing their diffusive regimes, their stroboscopic plots and the shape of guiding center potentials. The main result is the identification of cases anomalous diffusion depending on the values of the parameters (mostly the Larmor radius). The transitions between diffusive regimes are identified. The presence of highways for the super-diffusive trajectories are unveiled. The influence of the charge on these transitions from diffusive to ballistic behaviors is analyzed.