2 resultados para Roos, T.: Mitä on NLP

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

State-of-the-art NLP systems are generally based on the assumption that the underlying models are provided with vast datasets to train on. However, especially when working in multi-lingual contexts, datasets are often scarce, thus more research should be carried out in this field. This thesis investigates the benefits of introducing an additional training step when fine-tuning NLP models, named Intermediate Training, which could be exploited to augment the data used for the training phase. The Intermediate Training step is applied by training models on NLP tasks that are not strictly related to the target task, aiming to verify if the models are able to leverage the learned knowledge of such tasks. Furthermore, in order to better analyze the synergies between different categories of NLP tasks, experimentations have been extended also to Multi-Task Training, in which the model is trained on multiple tasks at the same time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much of the real-world dataset, including textual data, can be represented using graph structures. The use of graphs to represent textual data has many advantages, mainly related to maintaining a more significant amount of information, such as the relationships between words and their types. In recent years, many neural network architectures have been proposed to deal with tasks on graphs. Many of them consider only node features, ignoring or not giving the proper relevance to relationships between them. However, in many node classification tasks, they play a fundamental role. This thesis aims to analyze the main GNNs, evaluate their advantages and disadvantages, propose an innovative solution considered as an extension of GAT, and apply them to a case study in the biomedical field. We propose the reference GNNs, implemented with methodologies later analyzed, and then applied to a question answering system in the biomedical field as a replacement for the pre-existing GNN. We attempt to obtain better results by using models that can accept as input both node and edge features. As shown later, our proposed models can beat the original solution and define the state-of-the-art for the task under analysis.