4 resultados para Rhythm.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Ventricular cells are immersed in a bath of electrolytes and these ions are essential for a healthy heart and a regular rhythm. Maintaining physiological concentration of them is fundamental for reducing arrhythmias and risk of sudden cardiac death, especially in haemodialysis patients and in the heart diseases treatments. Models of electrically activity of the heart based on mathematical formulation are a part of the efforts to improve the understanding and prediction of heart behaviour. Modern models incorporate the extensive and ever increasing amounts of experimental data in incorporating biophysically detailed mechanisms to allow the detailed study of molecular and subcellular mechanisms of heart disease. The goal of this project was to simulate the effects of changes in potassium and calcium concentrations in the extracellular space between experimental data and and a description incorpored into two modern biophysically detailed models (Grandi et al. Model; O’Hara Rudy Model). Moreover the task was to analyze the changes in the ventricular electrical activity, in particular by studying the modifications on the simulated electrocardiographic signal. We used the cellular information obtained by the heart models in order to build a 1D tissue description. The fibre is composed by 165 cells, it is divided in four groups to differentiate the cell types that compound human ventricular tissue. The main results are the following: Grandi et al. (GBP) model is not even able to reproduce the correct action potential profile in hyperkalemia. Data from hospitalized patients indicates that the action potential duration (APD) should be shorter than physiological state but in this model we have the opposite. From the potassium point of view the results obtained by using O’Hara model (ORD) are in agreement with experimental data for the single cell action potential in hypokalemia and hyperkalemia, most of the currents follow the data from literature. In the 1D simulations we were able to reproduce ECGs signal in most the potassium concentrations we selected for this study and we collected data that can help physician in understanding what happens in ventricular cells during electrolyte disorder. However the model fails in the conduction of the stimulus under hyperkalemic conditions. The model emphasized the ECG modifications when the K+ is slightly more than physiological value. In the calcium setting using the ORD model we found an APD shortening in hypocalcaemia and an APD lengthening in hypercalcaemia, i.e. the opposite to experimental observation. This wrong behaviour is kept in one dimensional simulations bringing a longer QT interval in the ECG under higher [Ca2+]o conditions and vice versa. In conclusion it has highlighted that the actual ventricular models present in literature, even if they are useful in the original form, they need an improvement in the sensitivity of these two important electrolytes. We suggest an use of the GBP model with modifications introduced by Carro et al. who understood that the failure of this model is related to the Shannon et al. model (a rabbit model) from which the GBP model was built. The ORD model should be modified in the Ca2+ - dependent IcaL and in the influence of the Iks in the action potential for letting it him produce a correct action potential under different calcium concentrations. In the 1D tissue maybe a heterogeneity setting of intra and extracellular conductances for the different cell types should improve a reproduction of the ECG signal.
A Phase Space Box-counting based Method for Arrhythmia Prediction from Electrocardiogram Time Series
Resumo:
Arrhythmia is one kind of cardiovascular diseases that give rise to the number of deaths and potentially yields immedicable danger. Arrhythmia is a life threatening condition originating from disorganized propagation of electrical signals in heart resulting in desynchronization among different chambers of the heart. Fundamentally, the synchronization process means that the phase relationship of electrical activities between the chambers remains coherent, maintaining a constant phase difference over time. If desynchronization occurs due to arrhythmia, the coherent phase relationship breaks down resulting in chaotic rhythm affecting the regular pumping mechanism of heart. This phenomenon was explored by using the phase space reconstruction technique which is a standard analysis technique of time series data generated from nonlinear dynamical system. In this project a novel index is presented for predicting the onset of ventricular arrhythmias. Analysis of continuously captured long-term ECG data recordings was conducted up to the onset of arrhythmia by the phase space reconstruction method, obtaining 2-dimensional images, analysed by the box counting method. The method was tested using the ECG data set of three different kinds including normal (NR), Ventricular Tachycardia (VT), Ventricular Fibrillation (VF), extracted from the Physionet ECG database. Statistical measures like mean (μ), standard deviation (σ) and coefficient of variation (σ/μ) for the box-counting in phase space diagrams are derived for a sliding window of 10 beats of ECG signal. From the results of these statistical analyses, a threshold was derived as an upper bound of Coefficient of Variation (CV) for box-counting of ECG phase portraits which is capable of reliably predicting the impeding arrhythmia long before its actual occurrence. As future work of research, it was planned to validate this prediction tool over a wider population of patients affected by different kind of arrhythmia, like atrial fibrillation, bundle and brunch block, and set different thresholds for them, in order to confirm its clinical applicability.
Resumo:
The present study was conducted to investigate the influence of restricted food access on Solea senegalensis behaviour and daily expression of clock genes in central (diencephalon and optic tectum) and pheripheral (liver) tissues. The Senegalese sole is a marine teleost fish belonging to the Class of Actinopterygii, Order Pleuronectiformes and Family Soleidae. Its geographical distribution in the Mediterranean sea is fairly broad, covering the south and east of the Iberian Peninsula, the North of Africa and Middle East until the coast of Turkey. From a commercial perspective Solea senegalensis has acquired in recent years, a key role in aquacolture industry of the Iberian Peninsula. The Senegalese sole is also acquiring an important relevance in chronobiological studies as the number of published works focused on the sole circadian system has increased in the last few years. The molecular mechanisms underlying sole circadian rhythms has also been explored recently, both in adults and developing sole. Moreover, the consideration of the Pleuronectiformes Order as one of the most evolved teleost groups make the Senegalese sole a species of high interest under a comparative and phylogenetic point of view. All these facts have reinforced the election of Senegalese sole as model species for the present study. The animals were kept under 12L:12D photoperiod conditions and divided into three experimental groups depending on the feeding time: fed at midlight (ML), middark (MD) or random (RND) times. Throughout the experiment, the existence of a daily activity rhythm and it synchronization to the light-dark and feeding cycles was checked. To this end locomotor activity was registred by means of two infrared photocells placed in pvc tube 10 cm below the water surface (upper photocell) and the other one was located 10 cm above the bottom of the tank (bottom photocell). The photocell were connected to a computer so that every time a fish interrupted the infrared light beam, it produced an output signal that was recorded. The number of light beam interruptions was stored every 10 minutes by specialized software for data acquisition.
Resumo:
This dissertation intends to present and analyse the translation from English into Italian of the first twenty-five chapters of Habibi, a teenager and young adult’s novel written by the Palestinian-American author Naomi Shihab Nye. It has been necessary to present the theoretical approach to the literary translation studies, in order to focus the attention on the translation problems and provide suitable solutions and strategies. The first chapter gives an historical perspective on children’s literature from the end of the Nineteenth century till today, distinguishing the Italian and the American contexts. The description of the evolution process of this literary genre, which developed to satisfy the needs of the educational system, is its central issue. At the end of the chapter, we outline the main traits characterizing children’s literature and the image of the ideal reader. The second chapter provides an overview on Palestinian literature, especially on the features of the contemporary novel and the Diaspora literature. Afterwards, we present the author Naomi Shihab Nye and the book Habibi. In the third chapter we analyze the novel, focusing the attention on the rhythm of the narration, on the linguistic registers and the textual peculiarities found during the reading stage, according to the features of the children’s literature. The fourth chapter consists of the translation of the first twenty-five chapters of the novel. The fifth chapter begins with a section about the translation theory, the literary translation studies, focusing on the translation of children’s literature. Finally, there is the translation analysis. Here we present the strategies and the choices of the translation process, along with some practical examples with reference to theoretical studies. Special attention is paid to culture-specific items, lexicon and syntax.The source text can be found in appendix.