6 resultados para Rheological additives
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis evaluates the rheological behaviour of asphalt mixtures and the corresponding extracted binders from the mixtures containing different amounts of Reclaimed Asphalt (RA). Generally, the use of RA is limited to certain amounts. The study materials are Stone Mastic Asphalts including a control sample with 0% RA, and other samples with RA rates of 30%, 60% and 100%. Another set of studied mixtures are Asphalt Concretes (AC) types with again a control mix having 0% RA rate and the other mixtures designs containing 30%, 60% and 90% of reclaimed asphalt which also contain additives. In addition to the bitumen samples extracted from asphalt mixes, there are bitumen samples directly extracted from the original RA. To characterize the viscoelastic behaviour of the binders, Dynamic Shear Rheometer (DSR) tests were conducted on bitumen specimens. The resulting influence of the RA content in the bituminous binders are illustrated through master curves, black diagrams and Cole-Cole plots with regressing these experimental data by the application of the analogical 2S2P1D and the analytical CA model. The advantage of the CA model is in its limited number of parameters and thus is a simple model to use. The 2S2P1D model is an analogical rheological model for the prediction of the linear viscoelastic properties of both asphalt binders and mixtures. In order to study the influence of RA on mixtures, the Indirect Tensile Test (ITT) has been conducted. The master curves of different mixture samples are evaluated by regressing the test data points to a sigmoidal function and subsequently by comparing the master curves, the influence of RA materials is studied. The thesis also focusses on the applicability and also differences of CA model and 2S2P1D model for bitumen samples and the sigmoid function for the mixtures and presents the influence of the RA rate on the investigated model parameters.
Resumo:
Oggigiorno la ricerca di nuovi materiali per gradatori di campo da impiegarsi in accessori di cavi ha iniziato a studiare alcuni materiali nano dielettrici con proprietà elettriche non lineari con la tensione ed aventi proprietà migliorate rispetto al materiale base. Per questo motivo in questo elaborato si sono studiati materiali nanostrutturati a base di polietilene a bassa densità (LDPE) contenenti nano polveri di grafene funzionalizzato (G*), ossido di grafene (GO) e carbon black (CB). Il primo obiettivo è stato quello di selezionare e ottimizzare i metodi di fabbricazione dei provini. La procedura di produzione è suddivisa in due parti. Nella prima parte è stata utilizzatala tecnica del ball-milling, mentre nella seconda un pressa termica (thermal pressing). Mediante la spettroscopia dielettrica a banda larga (BDS) si sono misurate le componenti reali e immaginarie della permettività e il modulo della conducibilità del materiale, in tensione alternata. Il miglioramento delle proprietà rispetto al provino di base composto dal solo polietilene si sono ottenute quando il quantitativo delle nanopolveri era maggiore. Le misure sono state effettuate sia a 3 V che a 1 kV. Attraverso misurazioni di termogravimetria (TGA) si è osservato l’aumento della resistenza termica di tutti i provini, soprattutto nel caso quando la % di nanopolveri è maggiore. Per i provini LDPE + 0.3 wt% GO e LDPE + 0.3 wt% G* si è misurata la resistenza alle scariche parziali attraverso la valutazione dell’erosione superficiale dei provini. Per il provino contenente G* è stato registrato una diminuzione del 22% del volume eroso, rispetto al materiale base, mentre per quello contenente GO non vi sono state variazioni significative. Infine si è ricercata la resistenza al breakdown di questi ultimi tre provini sopra citati. Per la caratterizzazione si è fatto uso della distribuzione di Weibull. Lo scale parameter α risulta aumentare solo per il provino LDPE + 0.3 wt% G*.
Resumo:
This report studied the effect of crumb rubber in the asphalt mixture. The mixtures were also having limestone filler as a modifier. Mastic and mortar (mastic-fine aggregate system) mixture having different quantities of crumb rubber and limestone filler modifiers have been tested in order to find the best rutting resistance combination with an acceptable stiffness. The rheological tests on bituminous mastics and mortars have done in the laboratories in Nottingham Transport Engineering Centre (NTEC) and University of Bologna (DICAM). In the second chapter, an extensive literature review about the binders, additives, asphalt mixtures, various modelling and testing methods have been reviewed. In the third chapter, the physical and rheological properties of the binders have been investigated using both traditional devices and DSRs. The forth chapter is dedicated to finding the behaviour of the modified mastics (Binder-modifier system) with different combinations. Five different combinations of crumb rubber and limestone filler mastic tested with various methods using Dynamic Shear Rheometers. In the fifth chapter, in order to find the effect of the modifiers in the rheological properties of the complete asphalt mixture, the fine aggregates added to the same mastic combinations. In this phase, the behaviour of the system so-called mortar; binder, rubber, filler and fine aggregates) has been studied using the DSR device and the traditional tests. The results show that using fine crumb rubber reduces the thermo sensibility of the mastic (Binder Bitumen System) and improves its elasticity. Limestone filler in the other hand increases the mixture stiffness at high Frequencies. Another important outcome of this research was that the rheological properties of the mortars were following the same trend of the mastics, therefore study the rheological properties of the mastic gives an upright estimation of the mortar.
Resumo:
The objective of this dissertation is the evaluation of the exploitability of corn cobs as natural additives for bio-based polymer matrices, in order to hone their properties while keeping the fundamental quality of being fully bio-derived. The first part of the project has the purpose of finding the best solvent and conditions to extract antioxidants and anti-degrading molecules from corn cobs, exploiting room and high-temperature processes, traditional and advanced extraction methods, as well as polar and nonpolar solvents. The extracts in their entirety are then analysed to evaluate their antioxidant content, in order to select the conditions able to maximise their anti-degrading properties. The second part of the project, instead, focuses on assessing chemical and physical properties of the best-behaving extract when inserted in a polymeric matrix. To achieve this, low-density polyethylene (LDPE) and poly (butylene succinate – co – adipate) (PBSA) are employed. These samples are obtained through extrusion and are subsequently characterised exploiting the DSC equipment and a sinusoidally oscillating rheometer. In addition, extruded polymeric matrices are subjected to thermal and photo ageing, in order to identify their behaviour after different forms of degradation and to assess their performances with respect to synthetically produced anti-degrading additives.
Resumo:
The field of use of membranes is wide and ranges from the automotive industry to biomedical uses. Many formulations and compositions find a niche where they are able to improve efficiency, running cost and quality of the product. The aim of this research is to expand GVS’s product portfolio introducing a new membrane formulation. A series of additives were researched and evaluated, adding them to the membrane solutions, which were then cast and characterised using techniques like Scanning Electron Microscopy (SEM), poroscopy, FT-IT ATR and measurements like Water Break Through (WBT), Air Flow (AF), thickness. This study ultimately focused on one additive, which effect on the membranes was studied in various compositions. Interesting insights were also collected on the stability of the polymer solutions over time, which was found to change the membrane properties significantly, mainly affecting airflow and water breakthrough. Properties of the membranes were studied to find possible correlations to the amount of additive. The additive seems however to change the membrane porometry considerably depending on the time of immersion in the water bath. A new procedure to yield uniform unsupported polymeric membranes for tensile tests was developed. The additive was found to reduce elongation at break and decrease tensile strength of the membranes, possibly hinting toward plasticization of the product.