3 resultados para Remote Monitoring

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation deals with the development of a project concerning a demonstration in the scope of the Supply Chain 6 of the Internet of Energy (IoE) project: the Remote Monitoring Emulator, which bears my personal contribution in several sections. IoE is a project of international relevance, that means to establish an interoperability standard as regards the electric power production and utilization infrastructure, using Smart Space platforms. The future perspectives of IoE have to do with a platform for electrical power trade-of, the Smart Grid, whose energy is produced by decentralized renewable sources and whose services are exploited primarily according to the Internet of Things philosophy. The main consumers of this kind of smart technology will be Smart Houses (that is to say, buildings controlled by an autonomous system for electrical energy management that is interoperable with the Smart Grid) and Electric Mobility, that is a smart and automated management regarding movement and, overall, recharging of electrical vehicles. It is precisely in the latter case study that the project Remote Monitoring Emulator takes place. It consists in the development of a simulated platform for the management of an electrical vehicle recharging in a city. My personal contribution to this project lies in development and modeling of the simulation platform, of its counterpart in a mobile application and implementation of a city service prototype. This platform shall, ultimately, make up a demonstrator system exploiting the same device which a real user, inside his vehicle, would use. The main requirements that this platform shall satisfy will be interoperability, expandability and relevance to standards, as it needs to communicate with other development groups and to effectively respond to internal changes that can affect IoE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L'aumento inesorabile delle morti per cause legate a patologie cardiache, dovuto soprattutto al progressivo invecchiamento della popolazione occidentale, ha portato negli ultimi anni, alla necessità di sviluppare tecniche e sistemi di “Remote Monitoring”. L'obiettivo della tesi è la progettazione e lo sviluppo di un sistema di monitoraggio remoto dell'attività elettrica cardiaca basato sull’utilizzo delle piattaforme Android e Arduino. Il valore aggiunto della soluzione proposta e sviluppata è, quindi, soprattutto da ricercarsi nella tipologia di tecnologie utilizzate per la realizzazione del sistema (Android/Arduino): oltre, alla loro continua espansione, in termini di diffusione e avanzamento tecnologico, facilmente riscontrabile, hanno tutte l’importante caratteristica di essere totalmente Open Source, rendendo, quindi, ogni elemento del sistema eventualmente espandibile da chiunque lo desideri.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although Recovery is often defined as the less studied and documented phase of the Emergency Management Cycle, a wide literature is available for describing characteristics and sub-phases of this process. Previous works do not allow to gain an overall perspective because of a lack of systematic consistent monitoring of recovery utilizing advanced technologies such as remote sensing and GIS technologies. Taking into consideration the key role of Remote Sensing in Response and Damage Assessment, this thesis is aimed to verify the appropriateness of such advanced monitoring techniques to detect recovery advancements over time, with close attention to the main characteristics of the study event: Hurricane Katrina storm surge. Based on multi-source, multi-sensor and multi-temporal data, the post-Katrina recovery was analysed using both a qualitative and a quantitative approach. The first phase was dedicated to the investigation of the relation between urban types, damage and recovery state, referring to geographical and technological parameters. Damage and recovery scales were proposed to review critical observations on remarkable surge- induced effects on various typologies of structures, analyzed at a per-building level. This wide-ranging investigation allowed a new understanding of the distinctive features of the recovery process. A quantitative analysis was employed to develop methodological procedures suited to recognize and monitor distribution, timing and characteristics of recovery activities in the study area. Promising results, gained by applying supervised classification algorithms to detect localization and distribution of blue tarp, have proved that this methodology may help the analyst in the detection and monitoring of recovery activities in areas that have been affected by medium damage. The study found that Mahalanobis Distance was the classifier which provided the most accurate results, in localising blue roofs with 93.7% of blue roof classified correctly and a producer accuracy of 70%. It was seen to be the classifier least sensitive to spectral signature alteration. The application of the dissimilarity textural classification to satellite imagery has demonstrated the suitability of this technique for the detection of debris distribution and for the monitoring of demolition and reconstruction activities in the study area. Linking these geographically extensive techniques with expert per-building interpretation of advanced-technology ground surveys provides a multi-faceted view of the physical recovery process. Remote sensing and GIS technologies combined to advanced ground survey approach provides extremely valuable capability in Recovery activities monitoring and may constitute a technical basis to lead aid organization and local government in the Recovery management.