9 resultados para Relational algebra
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In questa tesi ci si propone lo studio dell'anello delle matrici quadrate di ordine n, su un campo, per arrivare a dimostrare che ha solo ideali banali pur non essendo un campo. Allo scopo si introducono le operazioni elementari e il procedimento di traduzione di tali operazioni con opportune moltiplicazioni per matrici dette elementari. Si considera inoltre il gruppo generale lineare arrivando a dimostrare che un particolare sottoinsieme delle matrici elementari è un generatore di tale gruppo.
Resumo:
Nowadays, more and more data is collected in large amounts, such that the need of studying it both efficiently and profitably is arising; we want to acheive new and significant informations that weren't known before the analysis. At this time many graph mining algorithms have been developed, but an algebra that could systematically define how to generalize such operations is missing. In order to propel the development of a such automatic analysis of an algebra, We propose for the first time (to the best of my knowledge) some primitive operators that may be the prelude to the systematical definition of a hypergraph algebra in this regard.
Machine Learning applicato al Web Semantico: Statistical Relational Learning vs Tensor Factorization
Resumo:
Obiettivo della tesi è analizzare e testare i principali approcci di Machine Learning applicabili in contesti semantici, partendo da algoritmi di Statistical Relational Learning, quali Relational Probability Trees, Relational Bayesian Classifiers e Relational Dependency Networks, per poi passare ad approcci basati su fattorizzazione tensori, in particolare CANDECOMP/PARAFAC, Tucker e RESCAL.
Resumo:
Nella tesi viene fornita una costruzione dell'algebra esterna di un K-spazio vettoriale, alcune conseguenze principali come la derivazione in maniera traspente del determinante di e alcune sue proprietà e l'introduzione del concetto di Grassmanniana.
Resumo:
Questa tesi descrive alcune proprietà delle algebre monounarie finite e si propone di trovare un metodo per classificarle. Poiché infatti il numero di algebre di ordine n aumenta notevolmente con la crescita di quest’ultimo, si cerca un modo per suddividerle in classi d’isomorfismo. In particolare, dal momento che anche il numero di queste classi cresce esponenzialmente all’aumentare di n, utilizziamo una classificazione meno fine dell’isomorfismo basata sul polinomio strutturale. Grazie a questo strumento infatti è possibile risalire a famiglie di grafi orientati associati ad algebre monounarie, a due a due non isomorfi, ricavando perciò alcune specifiche caratteristiche di quest’ultime. Infine, calcolando l’ordine di gruppi particolari, detti automorfi, si può ottenere l’effettivo numero di algebre aventi un dato polinomio strutturale.