3 resultados para Regression methods

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cellular basis of cardiac pacemaking activity, and specifically the quantitative contributions of particular mechanisms, is still debated. Reliable computational models of sinoatrial nodal (SAN) cells may provide mechanistic insights, but competing models are built from different data sets and with different underlying assumptions. To understand quantitative differences between alternative models, we performed thorough parameter sensitivity analyses of the SAN models of Maltsev & Lakatta (2009) and Severi et al (2012). Model parameters were randomized to generate a population of cell models with different properties, simulations performed with each set of random parameters generated 14 quantitative outputs that characterized cellular activity, and regression methods were used to analyze the population behavior. Clear differences between the two models were observed at every step of the analysis. Specifically: (1) SR Ca2+ pump activity had a greater effect on SAN cell cycle length (CL) in the Maltsev model; (2) conversely, parameters describing the funny current (If) had a greater effect on CL in the Severi model; (3) changes in rapid delayed rectifier conductance (GKr) had opposite effects on action potential amplitude in the two models; (4) within the population, a greater percentage of model cells failed to exhibit action potentials in the Maltsev model (27%) compared with the Severi model (7%), implying greater robustness in the latter; (5) confirming this initial impression, bifurcation analyses indicated that smaller relative changes in GKr or Na+-K+ pump activity led to failed action potentials in the Maltsev model. Overall, the results suggest experimental tests that can distinguish between models and alternative hypotheses, and the analysis offers strategies for developing anti-arrhythmic pharmaceuticals by predicting their effect on the pacemaking activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis project is to automatically localize HCC tumors in the human liver and subsequently predict if the tumor will undergo microvascular infiltration (MVI), the initial stage of metastasis development. The input data for the work have been partially supplied by Sant'Orsola Hospital and partially downloaded from online medical databases. Two Unet models have been implemented for the automatic segmentation of the livers and the HCC malignancies within it. The segmentation models have been evaluated with the Intersection-over-Union and the Dice Coefficient metrics. The outcomes obtained for the liver automatic segmentation are quite good (IOU = 0.82; DC = 0.35); the outcomes obtained for the tumor automatic segmentation (IOU = 0.35; DC = 0.46) are, instead, affected by some limitations: it can be state that the algorithm is almost always able to detect the location of the tumor, but it tends to underestimate its dimensions. The purpose is to achieve the CT images of the HCC tumors, necessary for features extraction. The 14 Haralick features calculated from the 3D-GLCM, the 120 Radiomic features and the patients' clinical information are collected to build a dataset of 153 features. Now, the goal is to build a model able to discriminate, based on the features given, the tumors that will undergo MVI and those that will not. This task can be seen as a classification problem: each tumor needs to be classified either as “MVI positive” or “MVI negative”. Techniques for features selection are implemented to identify the most descriptive features for the problem at hand and then, a set of classification models are trained and compared. Among all, the models with the best performances (around 80-84% ± 8-15%) result to be the XGBoost Classifier, the SDG Classifier and the Logist Regression models (without penalization and with Lasso, Ridge or Elastic Net penalization).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cerebral cortex presents self-similarity in a proper interval of spatial scales, a property typical of natural objects exhibiting fractal geometry. Its complexity therefore can be characterized by the value of its fractal dimension (FD). In the computation of this metric, it has usually been employed a frequentist approach to probability, with point estimator methods yielding only the optimal values of the FD. In our study, we aimed at retrieving a more complete evaluation of the FD by utilizing a Bayesian model for the linear regression analysis of the box-counting algorithm. We used T1-weighted MRI data of 86 healthy subjects (age 44.2 ± 17.1 years, mean ± standard deviation, 48% males) in order to gain insights into the confidence of our measure and investigate the relationship between mean Bayesian FD and age. Our approach yielded a stronger and significant (P < .001) correlation between mean Bayesian FD and age as compared to the previous implementation. Thus, our results make us suppose that the Bayesian FD is a more truthful estimation for the fractal dimension of the cerebral cortex compared to the frequentist FD.