2 resultados para Region of interest

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared with other mature engineering disciplines, fracture mechanics of concrete is still a developing field and very important for structures like bridges subject to dynamic loading. An historical point of view of what done in the field is provided and then the project is presented. The project presents an application of the Digital Image Correlation (DIC) technique for the detection of cracks at the surface of concrete prisms (500mmx100mmx100mm) subject to flexural loading conditions (Four Point Bending test). The technique provide displacement measurements of the region of interest and from this displacement field information about crack mouth opening (CMOD) are obtained and related to the applied load. The evolution of the fracture process is shown through graphs and graphical maps of the displacement at some step of the loading process. The study shows that it is possible with the DIC system to detect the appearance and evolution of cracks, even before the cracks become visually detectable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of my thesis is to parallelize the Weighting Histogram Analysis Method (WHAM), which is a popular algorithm used to calculate the Free Energy of a molucular system in Molecular Dynamics simulations. WHAM works in post processing in cooperation with another algorithm called Umbrella Sampling. Umbrella Sampling has the purpose to add a biasing in the potential energy of the system in order to force the system to sample a specific region in the configurational space. Several N independent simulations are performed in order to sample all the region of interest. Subsequently, the WHAM algorithm is used to estimate the original system energy starting from the N atomic trajectories. The parallelization of WHAM has been performed through CUDA, a language that allows to work in GPUs of NVIDIA graphic cards, which have a parallel achitecture. The parallel implementation may sensibly speed up the WHAM execution compared to previous serial CPU imlementations. However, the WHAM CPU code presents some temporal criticalities to very high numbers of interactions. The algorithm has been written in C++ and executed in UNIX systems provided with NVIDIA graphic cards. The results were satisfying obtaining an increase of performances when the model was executed on graphics cards with compute capability greater. Nonetheless, the GPUs used to test the algorithm is quite old and not designated for scientific calculations. It is likely that a further performance increase will be obtained if the algorithm would be executed in clusters of GPU at high level of computational efficiency. The thesis is organized in the following way: I will first describe the mathematical formulation of Umbrella Sampling and WHAM algorithm with their apllications in the study of ionic channels and in Molecular Docking (Chapter 1); then, I will present the CUDA architectures used to implement the model (Chapter 2); and finally, the results obtained on model systems will be presented (Chapter 3).