15 resultados para Random access system
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The Internet of Things (IoT) is a critical pillar in the digital transformation because it enables interaction with the physical world through remote sensing and actuation. Owing to the advancements in wireless technology, we now have the opportunity of using their features to the best of our abilities and improve over the current situation. Indeed, the Internet of Things market is expanding at an exponential rate, with devices such as alarms and detectors, smart metres, trackers, and wearables being used on a global scale for automotive and agriculture, environment monitoring, infrastructure surveillance and management, healthcare, energy and utilities, logistics, good tracking, and so on. The Third Generation Partnership Project (3GPP) acknowledged the importance of IoT by introducing new features to support it. In particular, in Rel.13, the 3GPP introduced the so-called IoT to support Low Power Wide Area Networks (LPWAN).As these devices will be distributed in areas where terrestrial networks are not feasible or commercially viable, satellite networks will play a complementary role due to their ability to provide global connectivity via their large footprint size and short service deployment time. In this context, the goal of this thesis is to investigate the viability of integrating IoT technology with satellite communication (SatCom) systems, with a focus on the Random Access(RA) Procedure. Indeed, the RA is the most critical procedure because it allows the UE to achieve uplink synchronisation, obtain the permanent ID, and obtain uplink transmission resources. The goal of this thesis is to evaluate preamble detection in the SatCom environment.
Resumo:
In the Massive IoT vision, millions of devices need to be connected to the Internet through a wireless access technology. However, current IoT-focused standards are not fully prepared for this future. In this thesis, a novel approach to Non-Orthogonal techniques for Random Access, which is the main bottleneck in high density systems, is proposed. First, the most popular wireless access standards are presented, with a focus on Narrowband-IoT. Then, the Random Access procedure as implemented in NB-IoT is analyzed. The Non-Orthogonal Random Access technique is presented next, along with two potential algorithms for the detection of non-orthogonal preambles. Finally, the performance of the proposed solutions are obtained through numerical simulations.
Resumo:
Con il crescente utilizzo delle reti wireless la sicurezza e l'affidabilità del servizio stanno diventando requisiti fondamentali da garantire. Questo studio ha come obiettivi il rilevamento di un attacco jammer e la classificazione della tipologia dell'attacco (reattivo, random e periodico) in una rete wireless in cui gli utenti comunicano con un access point tramite il protocollo random access slotted Aloha. La classificazione degli attacchi è infatti fondamentale per attuare le dovute contromisure ed evitare cali di performance nella rete. Le metriche estratte, fra cui la packet delivery ratio (PDR) e la rispettiva analisi spettrale, il rapporto segnale rumore medio e la varianza dell'rapporto segnale rumore, sono risultate essere efficaci nella classificazione dei jammers. In questo elaborato è stato implementato un sistema di detection e classificazione di jammer basato su machine learning, che ha permesso di ottenere una accuratezza complessiva del 92.5% nella classificazione ed una probabilità di detection superiore al 95% per valori di PDR inferiori o uguali al 70%.
Resumo:
Pervasive and distributed Internet of Things (IoT) devices demand ubiquitous coverage beyond No-man’s land. To satisfy plethora of IoT devices with resilient connectivity, Non-Terrestrial Networks (NTN) will be pivotal to assist and complement terrestrial systems. In a massiveMTC scenario over NTN, characterized by sporadic uplink data reports, all the terminals within a satellite beam shall be served during the short visibility window of the flying platform, thus generating congestion due to simultaneous access attempts of IoT devices on the same radio resource. The more terminals collide, the more average-time it takes to complete an access which is due to the decreased number of successful attempts caused by Back-off commands of legacy methods. A possible countermeasure is represented by Non-Orthogonal Multiple Access scheme, which requires the knowledge of the number of superimposed NPRACH preambles. This work addresses this problem by proposing a Neural Network (NN) algorithm to cope with the uncoordinated random access performed by a prodigious number of Narrowband-IoT devices. Our proposed method classifies the number of colliding users, and for each estimates the Time of Arrival (ToA). The performance assessment, under Line of Sight (LoS) and Non-LoS conditions in sub-urban environments with two different satellite configurations, shows significant benefits of the proposed NN algorithm with respect to traditional methods for the ToA estimation.
Resumo:
Recent years have witnessed an increasing evolution of wireless mobile networks, with an intensive research work aimed at developing new efficient techniques for the future 6G standards. In the framework of massive machine-type communication (mMTC), emerging Internet of Things (IoT) applications, in which sensor nodes and smart devices transmit unpredictably and sporadically short data packets without coordination, are gaining an increasing interest. In this work, new medium access control (MAC) protocols for massive IoT, capable of supporting a non-instantaneous feedback from the receiver, are studied. These schemes guarantee an high time for the acknowledgment (ACK) messages to the base station (BS), without a significant performance loss. Then, an error floor analysis of the considered protocols is performed in order to obtain useful guidelines for the system design. Furthermore, non-orthogonal multiple access (NOMA) coded random access (CRA) schemes based on power domain are here developed. The introduction of power diversity permits to solve more packet collision at the physical (PHY) layer, with an important reduction of the packet loss rate (PLR) in comparison to the number of active users in the system. The proposed solutions aim to improve the actual grant-free protocols, respecting the stringent constraints of scalability, reliability and latency requested by 6G networks.
Resumo:
Random access (RA) protocols are normally used in a satellite networks for initial terminal access and are particularly effective since no coordination is required. On the other hand, contention resolution diversity slotted Aloha (CRDSA), irregular repetition slotted Aloha (IRSA) and coded slotted Aloha (CSA) has shown to be more efficient than classic RA schemes as slotted Aloha, and can be exploited also when short packets transmissions are done over a shared medium. In particular, they relies on burst repetition and on successive interference cancellation (SIC) applied at the receiver. The SIC process can be well described using a bipartite graph representation and exploiting tools used for analyze iterative decoding. The scope of my Master Thesis has been to described the performance of such RA protocols when the Rayleigh fading is taken into account. In this context, each user has the ability to correctly decode a packet also in presence of collision and when SIC is considered this may result in multi-packet reception. Analysis of the SIC procedure under Rayleigh fading has been analytically derived for the asymptotic case (infinite frame length), helping the analysis of both throughput and packet loss rates. An upper bound of the achievable performance has been analytically obtained. It can be show that in particular channel conditions the throughput of the system can be greater than one packets per slot which is the theoretical limit of the Collision Channel case.
Resumo:
In this thesis asynchronous contention resolution diversity slotted ALOHA (ACRDA) is studied and implemented on computer to simulate a typical massive IoT scenario. Chapter 1 gives a general overview of existing multiple access schemes, reporting their fundamental concepts focusing more on Coded Random Access schemes and their characteristics. In Chapter 2 the asynchronous protocol ACRDA is explained in depth analyzing all parts of the scheme. In the third Chapter the results obtained following various simulations of the asynchronous scheme are reported and their performance are analyzed.
Resumo:
Lo scopo delle reti mobili è fornire ai dispositivi wireless accesso a una grande varietà di servizi dati, in un’ampia area geografica. Nonostante le reti cellulari odierne, basate sulla tecnologia Massive MIMO, possano raggiungere elevate performance in condizioni favorevoli (centro cella) esse, presentano all’interno dell’area di copertura, zone soggette a data-rate notevolmente ridotti. In questo elaborato, viene brevemente descritta la rete cell-free; una nuova architettura di rete pensata per superare i vecchi limiti delle reti cellulari tradizionali. Successivamente, vengono presentati attraverso simulazioni i due principali vantaggi che queste nuove reti cell-free offrono. Inoltre, viene analizzato uno schema random access in grado di gestire l’accesso multiplo per queste nuove architetture di rete. Questo schema rappresenta un’estensione di un protocollo già presente in letteratura e perfettamente funzionante per reti Massive MIMO, appartenente alla famiglia dei protocolli Coded Slotted ALOHA. Infine, un'analisi delle prestazioni e alcuni possibili scenari sono stati presentati, con lo scopo di valutare l'effetto che algoritmi di tipo SIC possono avere su queste reti.
Resumo:
In the recent decade, the request for structural health monitoring expertise increased exponentially in the United States. The aging issues that most of the transportation structures are experiencing can put in serious jeopardy the economic system of a region as well as of a country. At the same time, the monitoring of structures is a central topic of discussion in Europe, where the preservation of historical buildings has been addressed over the last four centuries. More recently, various concerns arose about security performance of civil structures after tragic events such the 9/11 or the 2011 Japan earthquake: engineers looks for a design able to resist exceptional loadings due to earthquakes, hurricanes and terrorist attacks. After events of such a kind, the assessment of the remaining life of the structure is at least as important as the initial performance design. Consequently, it appears very clear that the introduction of reliable and accessible damage assessment techniques is crucial for the localization of issues and for a correct and immediate rehabilitation. The System Identification is a branch of the more general Control Theory. In Civil Engineering, this field addresses the techniques needed to find mechanical characteristics as the stiffness or the mass starting from the signals captured by sensors. The objective of the Dynamic Structural Identification (DSI) is to define, starting from experimental measurements, the modal fundamental parameters of a generic structure in order to characterize, via a mathematical model, the dynamic behavior. The knowledge of these parameters is helpful in the Model Updating procedure, that permits to define corrected theoretical models through experimental validation. The main aim of this technique is to minimize the differences between the theoretical model results and in situ measurements of dynamic data. Therefore, the new model becomes a very effective control practice when it comes to rehabilitation of structures or damage assessment. The instrumentation of a whole structure is an unfeasible procedure sometimes because of the high cost involved or, sometimes, because it’s not possible to physically reach each point of the structure. Therefore, numerous scholars have been trying to address this problem. In general two are the main involved methods. Since the limited number of sensors, in a first case, it’s possible to gather time histories only for some locations, then to move the instruments to another location and replay the procedure. Otherwise, if the number of sensors is enough and the structure does not present a complicate geometry, it’s usually sufficient to detect only the principal first modes. This two problems are well presented in the works of Balsamo [1] for the application to a simple system and Jun [2] for the analysis of system with a limited number of sensors. Once the system identification has been carried, it is possible to access the actual system characteristics. A frequent practice is to create an updated FEM model and assess whether the structure fulfills or not the requested functions. Once again the objective of this work is to present a general methodology to analyze big structure using a limited number of instrumentation and at the same time, obtaining the most information about an identified structure without recalling methodologies of difficult interpretation. A general framework of the state space identification procedure via OKID/ERA algorithm is developed and implemented in Matlab. Then, some simple examples are proposed to highlight the principal characteristics and advantage of this methodology. A new algebraic manipulation for a prolific use of substructuring results is developed and implemented.
Resumo:
The present study was conducted to investigate the influence of restricted food access on Solea senegalensis behaviour and daily expression of clock genes in central (diencephalon and optic tectum) and pheripheral (liver) tissues. The Senegalese sole is a marine teleost fish belonging to the Class of Actinopterygii, Order Pleuronectiformes and Family Soleidae. Its geographical distribution in the Mediterranean sea is fairly broad, covering the south and east of the Iberian Peninsula, the North of Africa and Middle East until the coast of Turkey. From a commercial perspective Solea senegalensis has acquired in recent years, a key role in aquacolture industry of the Iberian Peninsula. The Senegalese sole is also acquiring an important relevance in chronobiological studies as the number of published works focused on the sole circadian system has increased in the last few years. The molecular mechanisms underlying sole circadian rhythms has also been explored recently, both in adults and developing sole. Moreover, the consideration of the Pleuronectiformes Order as one of the most evolved teleost groups make the Senegalese sole a species of high interest under a comparative and phylogenetic point of view. All these facts have reinforced the election of Senegalese sole as model species for the present study. The animals were kept under 12L:12D photoperiod conditions and divided into three experimental groups depending on the feeding time: fed at midlight (ML), middark (MD) or random (RND) times. Throughout the experiment, the existence of a daily activity rhythm and it synchronization to the light-dark and feeding cycles was checked. To this end locomotor activity was registred by means of two infrared photocells placed in pvc tube 10 cm below the water surface (upper photocell) and the other one was located 10 cm above the bottom of the tank (bottom photocell). The photocell were connected to a computer so that every time a fish interrupted the infrared light beam, it produced an output signal that was recorded. The number of light beam interruptions was stored every 10 minutes by specialized software for data acquisition.
Resumo:
La perdita di pacchetti durante una trasmissione su una rete Wireless influisce in maniera fondamentale sulla qualità del collegamento tra due End-System. Lo scopo del progetto è quello di implementare una tecnica di ritrasmissione asimmetrica anticipata dei pacchetti perduti, in modo da minimizzare i tempi di recupero dati e migliorare la qualità della comunicazione. Partendo da uno studio su determinati tipi di ritrasmissione, in particolare quelli implementati dal progetto ABPS, Always Best Packet Switching, si è maturata l'idea che un tipo di ritrasmissione particolarmente utile potrebbe avvenire a livello Access Point: nel caso in cui la perdita di pacchetti avvenga tra l'AP e il nodo mobile che vi è collegato via IEEE802.11, invece che attendere la ritrasmissione TCP e Effettuata dall'End-System sorgente è lo stesso Access Point che e effettua una ritrasmissione verso il nodo mobile per permettere un veloce recupero dei dati perduti. Tale funzionalità stata quindi concettualmente divisa in due parti, la prima si riferisce all'applicazione che si occupa della bufferizzazione di pacchetti che attraversano l'AP e della loro copia in memoria per poi ritrasmetterli in caso di segnalazione di mancata acquisizione, la seconda riguardante la modifica al kernel che permette la segnalazione anticipata dell'errore. E' già stata sviluppata un'applicazione che prevede una ritrasmissione anticipata da parte dell'Access Point Wifi, cioè una ritrasmissione prima che la notifica di avvenuta perdita raggiunga l'end-point sorgente e appoggiata su un meccanismo di simulazione di Error Detection. Inoltre è stata anche realizzata la ritrasmissione asincrona e anticipata del TCP. Questo documento tratta della realizzazione di una nuova applicazione che fornisca una più effciente versione del buffer di pacchetti e utilizzi il meccanismo di una ritrasmissione asimmetrica e anticipata del TCP, cioè attivare la ritrasmissione su richiesta del TCP tramite notifiche di validità del campo Acknowledgement.
Resumo:
In most real-life environments, mechanical or electronic components are subjected to vibrations. Some of these components may have to pass qualification tests to verify that they can withstand the fatigue damage they will encounter during their operational life. In order to conduct a reliable test, the environmental excitations can be taken as a reference to synthesize the test profile: this procedure is referred to as “test tailoring”. Due to cost and feasibility reasons, accelerated qualification tests are usually performed. In this case, the duration of the original excitation which acts on the component for its entire life-cycle, typically hundreds or thousands of hours, is reduced. In particular, the “Mission Synthesis” procedure lets to quantify the induced damage of the environmental vibration through two functions: the Fatigue Damage Spectrum (FDS) quantifies the fatigue damage, while the Maximum Response Spectrum (MRS) quantifies the maximum stress. Then, a new random Power Spectral Density (PSD) can be synthesized, with same amount of induced damage, but a specified duration in order to conduct accelerated tests. In this work, the Mission Synthesis procedure is applied in the case of so-called Sine-on-Random vibrations, i.e. excitations composed of random vibrations superimposed on deterministic contributions, in the form of sine tones typically due to some rotating parts of the system (e.g. helicopters, engine-mounted components, …). In fact, a proper test tailoring should not only preserve the accumulated fatigue damage, but also the “nature” of the excitation (in this case the sinusoidal components superimposed on the random process) in order to obtain reliable results. The classic time-domain approach is taken as a reference for the comparison of different methods for the FDS calculation in presence of Sine-on-Random vibrations. Then, a methodology to compute a Sine-on-Random specification based on a mission FDS is presented.
Resumo:
This thesis investigates one-dimensional random walks in random environment whose transition probabilities might have an infinite variance. The ergodicity of the dynamical system ''from the point of view of the particle'' is proved under the assumptions of transitivity and existence of an absolutely continuous steady state on the space of the environments. We show that, if the average of the local drift over the environments is summable and null, then the RWRE is recurrent. We provide an example satisfying all the hypotheses.
Resumo:
In this thesis we dealt with the problem of describing a transportation network in which the objects in movement were subject to both finite transportation capacity and finite accomodation capacity. The movements across such a system are realistically of a simultaneous nature which poses some challenges when formulating a mathematical description. We tried to derive such a general modellization from one posed on a simplified problem based on asyncronicity in particle transitions. We did so considering one-step processes based on the assumption that the system could be describable through discrete time Markov processes with finite state space. After describing the pre-established dynamics in terms of master equations we determined stationary states for the considered processes. Numerical simulations then led to the conclusion that a general system naturally evolves toward a congestion state when its particle transition simultaneously and we consider one single constraint in the form of network node capacity. Moreover the congested nodes of a system tend to be located in adjacent spots in the network, thus forming local clusters of congested nodes.