4 resultados para Railway simulation tools
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Since the end of the long winter of virtual reality (VR) at the beginning of the 2010 decade, many improvements have been made in terms of hardware technologies and software platforms performances and costs. Many expect such trend will continue, pushing the penetration rate of virtual reality headsets to skyrocket at some point in the future, just as mobile platforms did before. In the meantime, virtual reality is slowly transitioning from a specialized laboratory-only technology, to a consumer electronics appliance, opening interesting opportunities and challenges. In this transition, two interesting research questions amount to how 2D-based content and applications may benefit (or be hurt) by the adoption of 3D-based immersive environments and to how to proficiently support such integration. Acknowledging the relevance of the former, we here consider the latter question, focusing our attention on the diversified family of PC-based simulation tools and platforms. VR-based visualization is, in fact, widely understood and appreciated in the simulation arena, but mainly confined to high performance computing laboratories. Our contribution here aims at characterizing the simulation tools which could benefit from immersive interfaces, along with a general framework and a preliminary implementation which may be put to good use to support their transition from uniquely 2D to blended 2D/3D environments.
Resumo:
In the last years, the European countries have paid increasing attention to renewable sources and greenhouse emissions. The Council of the European Union and the European Parliament have established ambitious targets for the next years. In this scenario, biomass plays a prominent role since its life cycle produces a zero net carbon dioxide emission. Additionally, biomass can ensure plant operation continuity thanks to its availability and storage ability. Several conventional systems running on biomass are available at the moment. Most of them are performant either in the large-scale or in the small power range. The absence of an efficient system on the small-middle scale inspired this thesis project. The object is an innovative plant based on a wet indirectly fired gas turbine (WIFGT) integrated with an organic Rankine cycle (ORC) unit for combined heat and power production. The WIFGT is a performant system in the small-middle power range; the ORC cycle is capable of giving value to low-temperature heat sources. Their integration is investigated in this thesis with the aim of carrying out a preliminary design of the components. The targeted plant output is around 200 kW in order not to need a wide cultivation area and to avoid biomass shipping. Existing in-house simulation tools are used: They are adapted to this purpose. Firstly the WIFGT + ORC model is built; Zero-dimensional models of heat exchangers, compressor, turbines, furnace, dryer and pump are used. Different fluids are selected but toluene and benzene turn out to be the most suitable. In the indirectly fired gas turbine a pressure ratio around 4 leads to the highest efficiency. From the thermodynamic analysis the system shows an electric efficiency of 38%, outdoing other conventional plants in the same power range. The combined plant is designed to recover thermal energy: Water is used as coolant in the condenser. It is heated from 60°C up to 90°C, ensuring the possibility of space heating. Mono-dimensional models are used to design the heat exchange equipment. Different types of heat exchangers are chosen depending on the working temperature. A finned-plate heat exchanger is selected for the WIFGT heat transfer equipment due to the high temperature, oxidizing and corrosive environment. A once-through boiler with finned tubes is chosen to vaporize the organic fluid in the ORC. A plate heat exchanger is chosen for the condenser and recuperator. A quasi-monodimensional model for single-stage axial turbine is implemented to design both the WIFGT and the ORC turbine. The system simulation after the components design shows an electric efficiency around 34% with a decrease by 10% compared to the zero-dimensional analysis. The work exhibits the system potentiality compared to the existing plants from both technical and economic point of view.
Resumo:
Structural Health Monitoring (SHM) is an emerging area of research associated to improvement of maintainability and the safety of aerospace, civil and mechanical infrastructures by means of monitoring and damage detection. Guided wave structural testing method is an approach for health monitoring of plate-like structures using smart material piezoelectric transducers. Among many kinds of transducers, the ones that have beam steering feature can perform more accurate surface interrogation. A frequency steerable acoustic transducer (FSATs) is capable of beam steering by varying the input frequency and consequently can detect and localize damage in structures. Guided wave inspection is typically performed through phased arrays which feature a large number of piezoelectric transducers, complexity and limitations. To overcome the weight penalty, the complex circuity and maintenance concern associated with wiring a large number of transducers, new FSATs are proposed that present inherent directional capabilities when generating and sensing elastic waves. The first generation of Spiral FSAT has two main limitations. First, waves are excited or sensed in one direction and in the opposite one (180 ̊ ambiguity) and second, just a relatively rude approximation of the desired directivity has been attained. Second generation of Spiral FSAT is proposed to overcome the first generation limitations. The importance of simulation tools becomes higher when a new idea is proposed and starts to be developed. The shaped transducer concept, especially the second generation of spiral FSAT is a novel idea in guided waves based of Structural Health Monitoring systems, hence finding a simulation tool is a necessity to develop various design aspects of this innovative transducer. In this work, the numerical simulation of the 1st and 2nd generations of Spiral FSAT has been conducted to prove the directional capability of excited guided waves through a plate-like structure.
Resumo:
Radiation dose in x-ray computed tomography (CT) has become a topic of great interest due to the increasing number of CT examinations performed worldwide. In fact, CT scans are responsible of significant doses delivered to the patients, much larger than the doses due to the most common radiographic procedures. This thesis work, carried out at the Laboratory of Medical Technology (LTM) of the Rizzoli Orthopaedic Institute (IOR, Bologna), focuses on two primary objectives: the dosimetric characterization of the tomograph present at the IOR and the optimization of the clinical protocol for hip arthroplasty. In particular, after having verified the reliability of the dose estimates provided by the system, we compared the estimates of the doses delivered to 10 patients undergoing CT examination for the pre-operative planning of hip replacement with the Diagnostic Reference Level (DRL) for an osseous pelvis examination. Out of 10 patients considered, only for 3 of them the doses were lower than the DRL. Therefore, the necessity to optimize the clinical protocol emerged. This optimization was investigated using a human femur from a cadaver. Quantitative analysis and comparison of 3D reconstructions were made, after having performed manual segmentation of the femur from different CT acquisitions. Dosimetric simulations of the CT acquisitions on the femur were also made and associated to the accuracy of the 3D reconstructions, to analyse the optimal combination of CT acquisition parameters. The study showed that protocol optimization both in terms of Hausdorff distance and in terms of effective dose (ED) to the patient may be realized simply by modifying the value of the pitch in the protocol, by choosing between 0.98 and 1.37.