3 resultados para Railroad gauges

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical industry has to face safety problems linked to the hazards of chemicals and the risks posed by the plants where they are handled. However, their transport may cause significant risk values too: it’s not totally possible to avoid the occurrence of accidents. This work is focused on the emergency response to railway accidents involving hazardous materials, that is what has to be done once they happen to limit their consequences. A first effort has been devoted to understand the role given to this theme within legislations: it has been found out that often it’s not even taken into account. Exceptionally a few countries adopt guidelines suggesting how to plan the response, who is appointed to intervene and which actions should be taken first. An investigation has been made to define the tools available for the responders, with attention on the availability of chemical-specific safety distances. It has emerged that the ERG book adopted by some American countries has suggestions and the Belgian legislation too establishes criteria to evaluate these distances. An analysis has been conducted then on the most recent accidents occurred worldwide, to understand how the response was performed and which safety distances were adopted. These values were compared with the numbers reported by the ERG book and the results of two devoted software tools for consequence analysis of accidental spills scenarios. This comparison has shown that there are differences between them and that a more standardized approach is necessary. This is why further developments of the topic should focus on promoting uniform procedures for emergency response planning and on a worldwide adoption of a guidebook with suggestions about actions to reduce consequences and about safety distances, determined following finer researches. For this aim, the development of a detailed database of hazardous materials transportation accidents could be useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea level variation is one of the parameters directly related to climate change. Monitoring sea level rise is an important scientific issue since many populated areas of the world and megacities are located in low-lying regions. At present, sea level is measured by means of two techniques: the tide gauges and the satellite radar altimetry. Tide gauges measure sea-level relatively to a ground benchmark, hence, their measurements are directly affected by vertical ground motions. Satellite radar altimetry measures sea-level relative to a geocentric reference and are not affected by vertical land motions. In this study, the linear relative sea level trends of 35 tide gauge stations distributed across the Mediterranean Sea have been computed over the period 1993-2014. In order to extract the real sea-level variation, the vertical land motion has been estimated using the observations of available GPS stations and removed from the tide gauges records. These GPS-corrected trends have then been compared with satellite altimetry measurements over the same time interval (AVISO data set). A further comparison has been performed, over the period 1993-2013, using the CCI satellite altimetry data set which has been generated using an updated modeling. The absolute sea level trends obtained from satellite altimetry and GPS-corrected tide gauge data are mostly consistent, meaning that GPS data have provided reliable corrections for most of the sites. The trend values range between +2.5 and +4 mm/yr almost everywhere in the Mediterranean area, the largest trends were found in the Northern Adriatic Sea and in the Aegean. These results are in agreement with estimates of the global mean sea level rise over the last two decades. Where GPS data were not available, information on the vertical land motion deduced from the differences between absolute and relative trends are in agreement with the results of other studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a possible method to calculate sea level variation using geodetic-quality Global Navigate Satellite System (GNSS) receivers. Three antennas are used: two small antennas and a choke ring one, analyzing only Global Positioning System signals. The main goal of the thesis is to test a modified configuration for antenna set up. In particular, measurements obtained tilting one antenna to face the horizon are compared to measurements obtained from antennas looking upward. The location of the experiment is a coastal environment nearby the Onsala Space Observatory in Sweden. Sea level variations are obtained using periodogram analysis of the SNR signal and compared to synthetic gauge generated from two independent tide gauges. The choke ring antenna provides poor result, with an RMS around 6 cm and a correlation coefficients of 0.89. The smaller antennas provide correlation coefficients around 0.93. The antenna pointing upward present an RMS of 4.3 cm and the one pointing the horizon an RMS of 6.7 cm. Notable variation in the statistical parameters is found when modifying the length of the interval analyzed. In particular, doubts are risen on the reliability of certain scattered data. No relation is found between the accuracy of the method and weather conditions. Possible methods to enhance the available data are investigated, and correlation coefficient above 0.97 can be obtained with small antennas when sacrificing data points. Hence, the results provide evidence of the suitability of SNR signal analysis for sea level variation in coastal environment even in the case of adverse weather conditions. In particular, tilted configurations provides comparable result with upward looking geodetic antennas. A SNR signal simulator is also tested to investigate its performance and usability. Various configuration are analyzed in combination with the periodogram procedure used to calculate the height of reflectors. Consistency between the data calculated and those received is found, and the overall accuracy of the height calculation program is found to be around 5 mm for input height below 5 m. The procedure is thus found to be suitable to analyze the data provided by the GNSS antennas at Onsala.