5 resultados para Radon.

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scopo di questo lavoro è mostrare una soluzione al problema della ricostruzione delle immagini basata sullo strumento matematico della trasformata di Radon. In un primo momento si introdurrà il problema legato ad un particolare ambito, quello medico; ci si focalizzerà, infatti sui principi di funzionamento della TAC (tomografia assiale computerizzata)e si cercherà di chiarire dal punto di vista fisico come la trasformata di Radon del coefficiente di attenuazione del materiale sia utile per visualizzare degli organi o comunque degli oggetti che altrimenti non potrebbero essere visibili, se non rompendo la struttura che li contiene. Dopo aver raccontato un po' di storia della TAC, sarà necessario quindi definire tale trasformata, le sue principali proprietà e trovare una formula per la sua inversione. Si mostrerà che la sola formula d'inversione non potrà essere utilizzata a livello pratico; si ricaverà allora un algoritmo di retroproiezione filtrata, basato sulla trasformata di Radon, applicato per visualizzare delle immagini tramite TAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il presente elaborato vuole illustrare alcuni risultati matematici di teoria della misura grazie ai quali si sono sviluppate interessanti conseguenze nel campo della statistica inferenziale relativamente al concetto di statistica sufficiente. Il primo capitolo riprende alcune nozioni preliminari e si espone il teorema di Radon-Nikodym, sulle misure assolutamente continue, con conseguente dimostrazione. Il secondo capitolo dal titolo ‘Applicazioni alla statistica sufficiente’ si apre con le definizioni degli oggetti di studio e con la presentazione di alcune loro proprietà matematiche. Nel secondo paragrafo si espongono i concetti di attesa condizionata e probabilità condizionata in relazione agli elementi definiti nel paragrafo iniziale. Si entra nel corpo di questo capitolo con il terzo paragrafo nel quale definiamo gli insiemi di misura, gli insiemi di misura dominati e il concetto di statistica sufficiente. Viene qua presentato un importante teorema di caratterizzazione delle statistiche sufficienti per insiemi dominati e un suo corollario che descrive la relativa proprietà di fattorizzazione. Definiamo poi gli insiemi omogenei ed esponiamo un secondo corollario al teorema, relativo a tali insiemi. Si considera poi l’esempio del controllo di qualità per meglio illustrare la nozione di statistica sufficiente osservando una situazione più concreta. Successivamente viene introdotta la nozione di statistica sufficiente a coppie e viene enunciato un secondo teorema di caratterizzazione in termini di rapporto di verosimiglianza. Si procede quindi ad un confronto tra questi due tipi di sufficienza. Tale confronto viene operato in due situazioni differenti e porta a risultati diversi per ogni caso. Si conclude dunque l’elaborato marcando ancora l’effettiva bontà di una statistica sufficiente in termini di informazioni contenute al suo interno.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo scopo di questa tesi si articola in tre punti. In primo luogo, ci proponiamo di definire, sia in ambito analitico che in un contesto più algebrico e geometrico, la trasformata di Radon, di discutere la possibilità di un'eventuale generalizzazione a spazi non euclidei, e di presentare le sue proprietà più caratteristiche. In secondo luogo vogliamo dimostrare, sfruttando un collegamento di questa con la trasformata di Fourier, che la trasformata di Radon è un'applicazione iniettiva tra spazi funzionali e che è dunque invertibile, per poi descrivere uno dei possibili metodi formali di inversione. Accenneremo anche alle problematiche che insorgono nell'utilizzare l'antitrasformata di Radon in situazioni reali, e alle relative soluzioni. Infine, concluderemo la trattazione con una breve ma, ottimisticamente, delucidatrice, introduzione ad alcuni esempi di applicazione della trasformata di Radon a vari ambiti fisici e matematici.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All'interno della mia tesi verrà introdotta la teoria delle funzioni in R^{n} a variazione limitata (BV), seguendo le presentazioni di Lawrence C.Evans e Ronald F.Gariepy nel libro Measure Theory and Fine Properties of Functions e di Enrico Giusti nell'opera Minimal Surfaces and Functions of Bounded Variation. Le funzioni BV sono funzioni le cui derivate prime deboli sono misure di Radon, ossia misure di Borel regolari finite sui compatti. In particolare verranno anche analizzati gli insiemi E che hanno perimetro finito, ossia tali che la funzione indicatrice dell’insieme E sia una funzione BV. Nello specifico, nel primo capitolo verranno date le definizioni di funzioni BV e insiemi di perimetro finito, sia in una versione globale che in una locale, verrà enunciato un primo importante teorema per le funzioni BV e verrà analizzata la relazione tra funzioni di Sobolev e funzioni BV. Nel secondo capitolo, invece, verranno analizzate la semicontinuità inferiore, l'approssimazione con funzioni lisce e la compattezza di funzioni BV, mentre nel terzo capitolo verranno elencati alcuni risultati sulle funzioni BV riguardanti la Traccia, l'Estensione e la formula di Coarea. Infine, nel quarto ed ultimo capitolo, verranno studiate le disuguaglianze di Sobolev e Poincaré e le disuguaglianze isoperimetriche per funzioni BV.