7 resultados para RM algorithm
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Complex networks analysis is a very popular topic in computer science. Unfortunately this networks, extracted from different contexts, are usually very large and the analysis may be very complicated: computation of metrics on these structures could be very complex. Among all metrics we analyse the extraction of subnetworks called communities: they are groups of nodes that probably play the same role within the whole structure. Communities extraction is an interesting operation in many different fields (biology, economics,...). In this work we present a parallel community detection algorithm that can operate on networks with huge number of nodes and edges. After an introduction to graph theory and high performance computing, we will explain our design strategies and our implementation. Then, we will show some performance evaluation made on a distributed memory architectures i.e. the supercomputer IBM-BlueGene/Q "Fermi" at the CINECA supercomputing center, Italy, and we will comment our results.
Resumo:
The aim of my thesis is to parallelize the Weighting Histogram Analysis Method (WHAM), which is a popular algorithm used to calculate the Free Energy of a molucular system in Molecular Dynamics simulations. WHAM works in post processing in cooperation with another algorithm called Umbrella Sampling. Umbrella Sampling has the purpose to add a biasing in the potential energy of the system in order to force the system to sample a specific region in the configurational space. Several N independent simulations are performed in order to sample all the region of interest. Subsequently, the WHAM algorithm is used to estimate the original system energy starting from the N atomic trajectories. The parallelization of WHAM has been performed through CUDA, a language that allows to work in GPUs of NVIDIA graphic cards, which have a parallel achitecture. The parallel implementation may sensibly speed up the WHAM execution compared to previous serial CPU imlementations. However, the WHAM CPU code presents some temporal criticalities to very high numbers of interactions. The algorithm has been written in C++ and executed in UNIX systems provided with NVIDIA graphic cards. The results were satisfying obtaining an increase of performances when the model was executed on graphics cards with compute capability greater. Nonetheless, the GPUs used to test the algorithm is quite old and not designated for scientific calculations. It is likely that a further performance increase will be obtained if the algorithm would be executed in clusters of GPU at high level of computational efficiency. The thesis is organized in the following way: I will first describe the mathematical formulation of Umbrella Sampling and WHAM algorithm with their apllications in the study of ionic channels and in Molecular Docking (Chapter 1); then, I will present the CUDA architectures used to implement the model (Chapter 2); and finally, the results obtained on model systems will be presented (Chapter 3).
Resumo:
Due to its practical importance and inherent complexity, the optimisation of distribution networks for supplying drinking water has been the subject of extensive study for the past 30 years. The optimization is governed by sizing the pipes in the water distribution network (WDN) and / or optimises specific parts of the network such as pumps, tanks etc. or try to analyse and optimise the reliability of a WDN. In this thesis, the author has analysed two different WDNs (Anytown City and Cabrera city networks), trying to solve and optimise a multi-objective optimisation problem (MOOP). The main two objectives in both cases were the minimisation of Energy Cost (€) or Energy consumption (kWh), along with the total Number of pump switches (TNps) during a day. For this purpose, a decision support system generator for Multi-objective optimisation used. Its name is GANetXL and has been developed by the Center of Water System in the University of Exeter. GANetXL, works by calling the EPANET hydraulic solver, each time a hydraulic analysis has been fulfilled. The main algorithm used, was a second-generation algorithm for multi-objective optimisation called NSGA_II that gave us the Pareto fronts of each configuration. The first experiment that has been carried out was the network of Anytown city. It is a big network with a pump station of four fixed speed parallel pumps that are boosting the water dynamics. The main intervention was to change these pumps to new Variable speed driven pumps (VSDPs), by installing inverters capable to diverse their velocity during the day. Hence, it’s been achieved great Energy and cost savings along with minimisation in the number of pump switches. The results of the research are thoroughly illustrated in chapter 7, with comments and a variety of graphs and different configurations. The second experiment was about the network of Cabrera city. The smaller WDN had a unique FS pump in the system. The problem was the same as far as the optimisation process was concerned, thus, the minimisation of the energy consumption and in parallel the minimisation of TNps. The same optimisation tool has been used (GANetXL).The main scope was to carry out several and different experiments regarding a vast variety of configurations, using different pump (but this time keeping the FS mode), different tank levels, different pipe diameters and different emitters coefficient. All these different modes came up with a large number of results that were compared in the chapter 8. Concluding, it should be said that the optimisation of WDNs is a very interested field that has a vast space of options to deal with. This includes a large number of algorithms to choose from, different techniques and configurations to be made and different support system generators. The researcher has to be ready to “roam” between these choices, till a satisfactory result will convince him/her that has reached a good optimisation point.
Resumo:
Lo scopo del presente lavoro di tesi riguarda la caratterizzazione di un sensore ottico per la lettura di ematocrito e lo sviluppo dell’algoritmo di calibrazione del dispositivo. In altre parole, utilizzando dati ottenuti da una sessione di calibrazione opportunamente pianificata, l’algoritmo sviluppato ha lo scopo di restituire la curva di interpolazione dei dati che caratterizza il trasduttore. I passi principali del lavoro di tesi svolto sono sintetizzati nei punti seguenti: 1) Pianificazione della sessione di calibrazione necessaria per la raccolta dati e conseguente costruzione di un modello black box. Output: dato proveniente dal sensore ottico (lettura espressa in mV) Input: valore di ematocrito espresso in punti percentuali ( questa grandezza rappresenta il valore vero di volume ematico ed è stata ottenuta con un dispositivo di centrifugazione sanguigna) 2) Sviluppo dell’algoritmo L’algoritmo sviluppato e utilizzato offline ha lo scopo di restituire la curva di regressione dei dati. Macroscopicamente, il codice possiamo distinguerlo in due parti principali: 1- Acquisizione dei dati provenienti da sensore e stato di funzionamento della pompa bifasica 2- Normalizzazione dei dati ottenuti rispetto al valore di riferimento del sensore e implementazione dell’algoritmo di regressione. Lo step di normalizzazione dei dati è uno strumento statistico fondamentale per poter mettere a confronto grandezze non uniformi tra loro. Studi presenti, dimostrano inoltre un mutazione morfologica del globulo rosso in risposta a sollecitazioni meccaniche. Un ulteriore aspetto trattato nel presente lavoro, riguarda la velocità del flusso sanguigno determinato dalla pompa e come tale grandezza sia in grado di influenzare la lettura di ematocrito.
Resumo:
Il presente lavoro di tesi è stato svolto presso il servizio di Fisica Sanitaria del Policlinico Sant'Orsola-Malpighi di Bologna. Lo studio si è concentrato sul confronto tra le tecniche di ricostruzione standard (Filtered Back Projection, FBP) e quelle iterative in Tomografia Computerizzata. Il lavoro è stato diviso in due parti: nella prima è stata analizzata la qualità delle immagini acquisite con una CT multislice (iCT 128, sistema Philips) utilizzando sia l'algoritmo FBP sia quello iterativo (nel nostro caso iDose4). Per valutare la qualità delle immagini sono stati analizzati i seguenti parametri: il Noise Power Spectrum (NPS), la Modulation Transfer Function (MTF) e il rapporto contrasto-rumore (CNR). Le prime due grandezze sono state studiate effettuando misure su un fantoccio fornito dalla ditta costruttrice, che simulava la parte body e la parte head, con due cilindri di 32 e 20 cm rispettivamente. Le misure confermano la riduzione del rumore ma in maniera differente per i diversi filtri di convoluzione utilizzati. Lo studio dell'MTF invece ha rivelato che l'utilizzo delle tecniche standard e iterative non cambia la risoluzione spaziale; infatti gli andamenti ottenuti sono perfettamente identici (a parte le differenze intrinseche nei filtri di convoluzione), a differenza di quanto dichiarato dalla ditta. Per l'analisi del CNR sono stati utilizzati due fantocci; il primo, chiamato Catphan 600 è il fantoccio utilizzato per caratterizzare i sistemi CT. Il secondo, chiamato Cirs 061 ha al suo interno degli inserti che simulano la presenza di lesioni con densità tipiche del distretto addominale. Lo studio effettuato ha evidenziato che, per entrambi i fantocci, il rapporto contrasto-rumore aumenta se si utilizza la tecnica di ricostruzione iterativa. La seconda parte del lavoro di tesi è stata quella di effettuare una valutazione della riduzione della dose prendendo in considerazione diversi protocolli utilizzati nella pratica clinica, si sono analizzati un alto numero di esami e si sono calcolati i valori medi di CTDI e DLP su un campione di esame con FBP e con iDose4. I risultati mostrano che i valori ricavati con l'utilizzo dell'algoritmo iterativo sono al di sotto dei valori DLR nazionali di riferimento e di quelli che non usano i sistemi iterativi.
Resumo:
The problem of localizing a scatterer, which represents a tumor, in a homogeneous circular domain, which represents a breast, is addressed. A breast imaging method based on microwaves is considered. The microwave imaging involves to several techniques for detecting, localizing and characterizing tumors in breast tissues. In all such methods an electromagnetic inverse scattering problem exists. For the scattering detection method, an algorithm based on a linear procedure solution, inspired by MUltiple SIgnal Classification algorithm (MUSIC) and Time Reversal method (TR), is implemented. The algorithm returns a reconstructed image of the investigation domain in which it is detected the scatterer position. This image is called pseudospectrum. A preliminary performance analysis of the algorithm vying the working frequency is performed: the resolution and the signal-to-noise ratio of the pseudospectra are improved if a multi-frequency approach is considered. The Geometrical Mean-MUSIC algorithm (GM- MUSIC) is proposed as multi-frequency method. The performance of the GMMUSIC is tested in different real life computer simulations. The performed analysis shows that the algorithm detects the scatterer until the electrical parameters of the breast are known. This is an evident limit, since, in a real life situation, the anatomy of the breast is unknown. An improvement in GM-MUSIC is proposed: the Eye-GMMUSIC algorithm. Eye-GMMUSIC algorithm needs no a priori information on the electrical parameters of the breast. It is an optimizing algorithm based on the pattern search algorithm: it searches the breast parameters which minimize the Signal-to-Clutter Mean Ratio (SCMR) in the signal. Finally, the GM-MUSIC and the Eye-GMMUSIC algorithms are tested on a microwave breast cancer detection system consisting of an dipole antenna, a Vector Network Analyzer and a novel breast phantom built at University of Bologna. The reconstruction of the experimental data confirm the GM-MUSIC ability to localize a scatterer in a homogeneous medium.
Resumo:
Il lavoro di questa tesi si propone di esaminare i dati di immagini cerebrali ricevuti da due differentii bobine RF per l'imaging in risonanza magnetica. La strumentazione utilizzata é: un apparecchio di RMN che utilizza uno scanner a 1.5T (GE Medical System signa HDx 15) e due differenti bobine a radiofrequenza: 1) 8-channel brain phased array coil GE (1.5T HD 8 Channel High Resolution Head Array per il GE HDx MR System); 2) GE Quad HEAD Birdcage Coil. I software utilizzati invece sono stati quattro, due per la segmentazione e la parcellizzazione dei dati dalle acquisizioni di MRI (FSL e Freesurfer), e due per l'analisi dei dati (SPSS e Microsoft Excel). I tool utilizzati di FSL sono stati SIENA, per un'indagine sulla variazione percentile della totalitá del volume cerebrale; SIENAX invece permette una segmentazione di volumi di 6 sotto regioni: sostanza grigia (GREY), sostanza bianca (WHITE), totalitá del cervello (BRAIN), liquor cerebrospinale dei ventricoli (vcsf), scaling volumetrico (vscaling), sostanza grigia periferica (pgrey). Freesurfer invece parcellizza la corteccia cerebrale e segmenta le zone della sostanza grigia profonda cerebrale. Lo scopo ultimo era quello di analizzare come la differenza di segnale acquisito dalle due bobine variasse i risultati delle analisi volumetriche delle immagini e vedere se il t-test evidenziasse variazioni sistematiche. Questa analisi aveva come scopo quello di determinare la possibilità di confrontare i soggetti i cui dati sono stati ottenuti con due bobine differenti. I dati analizzati non hanno evidenziato particolari differenze tra le due bobine, se non per i valori del liquor dei ventricoli che sono risultati variare, verosimilmente, per i processi fisiologici di atrofia della sostanza grigia cerebrale che avvengono nel tempo intercorso tra un'acquisizione e l'altra.