3 resultados para RESIDUAL EFFECT
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Laser Shock Peening (LSP) is a technological process used to improve mechanical properties in metallic components. When a short and intense laser pulse irradiates a metallic surface, high pressure plasma is generated on the treated surface; elasto-plastic waves, then, propagate inside the target and create plastic strain. This surface treatment induces a deep compressive residual stresses field on the treated area and through the thickness; such compressive residual stress is expected to increase the fatigue resistance, and reduce the detrimental effects of corrosion and stress corrosion cracking.
Resumo:
In this work the problem of performing a numerical simulation of quasi-static crack propagation within an adhesive layer of a bonded joint under Mode I loading affected by stress field changes due to thermal-chemical shrinkage induced by cure process is addressed. Secondly, a parametric study on fracture critical energy, cohesive strength and Young's modulus is performed. Finally, a particular case of adhesive layer stiffening is simulated in order to verify qualitatively the major effect.
Resumo:
This study investigates the effect of an additive process in manufacturing of thick composites. Airstone 780 E epoxy resin and 785H Hardener system is used in the analysis since it is widely used wind turbine blade, namely thick components. As a fiber, fabric by SAERTEX (812 g/m2) with a 0-90 degrees layup direction is used. Temperature overshoot is a major issue during the manufacturing of thick composites. A high temperature overshoot leads to an increase in residual stresses. These residual stresses are causing warping, delamination, dimensional instability, and undesired distortion of composite structures. A coupled thermo-mechanical model capable of predicting cure induced residual stresses have been built using the commercial FE software Abaqus®. The possibility of building thick composite components by means of adding a finite number of sub-laminates has been investigated. The results have been compared against components manufactured following a standard route. The influence of pre-curing of the sub-laminates has also been addressed and results compared with standard practice. As a result of the study, it is found that introducing additive process can prevent temperature overshoot to occur and benefits the residual stresses generation during the curing process. However, the process time required increases by 50%, therefore increasing the manufacturing costs. An optimized cure cycle is required to minimize process time and cure induced defects simultaneously.