3 resultados para RADIO STRUCTURE
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Clusters of galaxies are the most massive and large gravitationally bounded systems in the whole Universe. Their study is of fundamental importance to constrain cosmological parameters and to obtain informations regarding various kind of emission in different wavebands. In particular, in the radio domain, beside the diffuse emission, the study is focused on the radio galaxies emission. Radio galaxies in clusters can have peculiar morphology, since they interact with the intracluster medium (ICM) in which they are embedded. Particularly, in this thesis we focused our attention on the so-called Narrow-Angle Tailed radio galaxies (NAT), which present radio jets that are bent at extreme angle, up to 90 degrees, from their original orientation. Some NAT show a narrow extended structure and the two radio tails are not resolved even with high resolution radio observations. An example is provided by the source IC310, in the Perseus Cluster, whose structure has been recently interpreted as due to Doppler boosting effects of a relativistic jet oriented at a small angle with respect to the line of sight. If the structure is due to relativistic effects, this implies that the jets are relativistic at about 400 kpc from the core, but this is in contrast with unified models, which predict that for low-power radio source (NAT are classified as FRI radio galaxies) the jets decelerate to sub-relativistic speed within a few kpc from the core. To investigate this scientific topic, in this thesis we have analyzed the innermost structure of a sample of eleven radio galaxies showing a very narrow NAT structure. We can conclude that the structure of these radio galaxies is different from that of IC310. These radio galaxies are indeed strongly influenced by environmental effects and are similar to classical NAT sources.
Resumo:
Our solar system contains an impressive amount of celestial bodies. For example Saturn posses a huge variety of natural satellites, the diversity in size and physical proprieties of which might amaze imagination. The observational data gathered in 30 years range of deep space missions revealed, that some of these bodies can hide subsurface oceans under their crust. The water, as we know, serves as a fundamental base for a possible appearance of life. This statement is quite exited for the scientific society and serves as a reason for studying so called ”ocean worlds”. In order to detect the celestial bodies with the hidden subsurface ocean, one of the key aspects is the study of their rotational state, which is strongly coupled with the body internal structure. It can be done through the various techniques mentioned in Chapter 1. The main goal of the thesis is the study of rotational state of Titan, whose interior structure expectedly contains liquid ocean layer under its icy crust. Titan is the largest moon of Saturn and it is the second largest moon in the solar system in general. This natural satellite is of particular scientific interest, because it is one of a kind which has substantial atmosphere. The present work was done using radio tracking data of the Dragonfly mission which is one of the next NASA’s missions destined for Titan selected as a part of the New Frontiers Program in 2019. The detailed characteristic of the Dragonfly regarding the landing site and mission lifetime was reported in Chapter 2. The radio-tracking communication link from Titan side was performed using Dragonfly X band transponder according to the schedule tracking opportunity. From Earth side according to the mission, Deep Space Station 25 which is a part of NASA’s Deep Space Network was considered. Only Doppler data was used for studying Titan rotational state, even though there are other reliable techniques described in Chapter 3, that in general could be implemented.
Resumo:
Galaxy clusters and groups are the most massive bounded structures and the knots of the large-scale structure of the Universe. These structures reside in dark matter haloes, hosting tens to hundreds of galaxies and they are filled with hot and rarefied gas. Radio Galaxies are a peculiar class of galaxies with a luminosity in the radio band up to 10^46 erg/s between 10 MHz and 100 GHz. These galaxies are a subclass of AGN in which there is accretion on the Super Massive Black Hole. The accretion generates jets of relativistic particles and magnetic fields which lose energy through synchrotron radiation, best observable at radio frequencies. The study of the spectral ageing of the AGN plasma is fundamental to understand its evolution, interaction with the environment and to constrain the AGN duty cycle. n this thesis, we have investigated the duty cycle of the nearby remnant radio galaxy NGC 6086, located in the centre of the galaxy group Abell 2162. We have made major steps forward thanks to the new high-sensitivity interferometers in the low-frequency radio band. We have detected for the first time three filaments of emission and a second couple of lobes. We have performed an integrated and resolved analysis on the previously known inner lobes, the new filaments and the older outer lobes. We have performed an age estimate of the two pairs of lobes to give constraints on the duty cycle of the source and an estimate of its active time.