3 resultados para Query Development
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
During the last semester of the Master’s Degree in Artificial Intelligence, I carried out my internship working for TXT e-Solution on the ADMITTED project. This paper describes the work done in those months. The thesis will be divided into two parts representing the two different tasks I was assigned during the course of my experience. The First part will be about the introduction of the project and the work done on the admittedly library, maintaining the code base and writing the test suits. The work carried out is more connected to the Software engineer role, developing features, fixing bugs and testing. The second part will describe the experiments done on the Anomaly detection task using a Deep Learning technique called Autoencoder, this task is on the other hand more connected to the data science role. The two tasks were not done simultaneously but were dealt with one after the other, which is why I preferred to divide them into two separate parts of this paper.
Resumo:
In the last years, the importance of locating people and objects and communicating with them in real time has become a common occurrence in every day life. Nowadays, the state of the art of location systems for indoor environments has not a dominant technology as instead occurs in location systems for outdoor environments, where GPS is the dominant technology. In fact, each location technology for indoor environments presents a set of features that do not allow their use in the overall application scenarios, but due its characteristics, it can well coexist with other similar technologies, without being dominant and more adopted than the others indoor location systems. In this context, the European project SELECT studies the opportunity of collecting all these different features in an innovative system which can be used in a large number of application scenarios. The goal of this project is to realize a wireless system, where a network of fixed readers able to query one or more tags attached to objects to be located. The SELECT consortium is composed of European institutions and companies, including Datalogic S.p.A. and CNIT, which deal with software and firmware development of the baseband receiving section of the readers, whose function is to acquire and process the information received from generic tagged objects. Since the SELECT project has an highly innovative content, one of the key stages of the system design is represented by the debug phase. This work aims to study and develop tools and techniques that allow to perform the debug phase of the firmware of the baseband receiving section of the readers.
Resumo:
The central objective of research in Information Retrieval (IR) is to discover new techniques to retrieve relevant information in order to satisfy an Information Need. The Information Need is satisfied when relevant information can be provided to the user. In IR, relevance is a fundamental concept which has changed over time, from popular to personal, i.e., what was considered relevant before was information for the whole population, but what is considered relevant now is specific information for each user. Hence, there is a need to connect the behavior of the system to the condition of a particular person and his social context; thereby an interdisciplinary sector called Human-Centered Computing was born. For the modern search engine, the information extracted for the individual user is crucial. According to the Personalized Search (PS), two different techniques are necessary to personalize a search: contextualization (interconnected conditions that occur in an activity), and individualization (characteristics that distinguish an individual). This movement of focus to the individual's need undermines the rigid linearity of the classical model overtaken the ``berry picking'' model which explains that the terms change thanks to the informational feedback received from the search activity introducing the concept of evolution of search terms. The development of Information Foraging theory, which observed the correlations between animal foraging and human information foraging, also contributed to this transformation through attempts to optimize the cost-benefit ratio. This thesis arose from the need to satisfy human individuality when searching for information, and it develops a synergistic collaboration between the frontiers of technological innovation and the recent advances in IR. The search method developed exploits what is relevant for the user by changing radically the way in which an Information Need is expressed, because now it is expressed through the generation of the query and its own context. As a matter of fact the method was born under the pretense to improve the quality of search by rewriting the query based on the contexts automatically generated from a local knowledge base. Furthermore, the idea of optimizing each IR system has led to develop it as a middleware of interaction between the user and the IR system. Thereby the system has just two possible actions: rewriting the query, and reordering the result. Equivalent actions to the approach was described from the PS that generally exploits information derived from analysis of user behavior, while the proposed approach exploits knowledge provided by the user. The thesis went further to generate a novel method for an assessment procedure, according to the "Cranfield paradigm", in order to evaluate this type of IR systems. The results achieved are interesting considering both the effectiveness achieved and the innovative approach undertaken together with the several applications inspired using a local knowledge base.