4 resultados para Quasi-particle Scattering
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The aim of this thesis is the study of the normal phase of a mass imbalanced and polarized ultra-cold Fermi gas in the context of the BCS-BEC crossover, using a diagrammatic approach known as t-matrix approximation. More specifically, the calculations are implemented using the fully self-consistent t-matrix (or Luttinger- Ward) approach, which is already experimentally and numerically validated for the balanced case. An imbalance (polarization) between the two spin populations works against pairing and superfluidity. For sufficiently large polarization (and not too strong attraction) the system remains in the normal phase even at zero temperature. This phase is expected to be well described by the Landau’s Fermi liquid theory. By reducing the spin polarization, a critical imbalance is reached where a quantum phase transition towards a superfluid phase occurs and the Fermi liquid description breaks down. Depending on the strength of the interaction, the exotic superfluid phase at the quantum critical point (QCP) can be either a FFLO phase (Fulde-Ferrell-Larkin-Ovchinnikov) or a Sarma phase. In this regard, the presence of mass imbalance can strongly influence the nature of the QCP, by favouring one of these two exotic types of pairing over the other, depending on whether the majority of the two species is heavier or lighter than the minority. The analysis of the system is made by focusing on the temperature-coupling-polarization phase diagram for different mass ratios of the two components and on the study of different thermodynamic quantities at finite temperature. The evolution towards a non-Fermi liquid behavior at the QCP is investigated by calculating the fermionic quasi-particle residues, the effective masses and the self-energies at zero temperature.
Resumo:
Ultracold gases provide an ideal platform for quantum simulations of many-body systems. Here we are interested in a particular system which has been the focus of most experimental and theoretical works on ultracold fermionic gases: the unitary Fermi gas. In this work we study with Quantum Monte Carlo simulations a two-component gas of fermionic atoms at zero temperature in the unitary regime. Specifically, we are interested in studying how the effective masses for the quasi-particles of the two components of the Fermi liquid evolve as the polarization is progressively reduced from full to lower values. A recent theoretical work, based on alternative diagrammatic methods, has indeed suggested that such effective masses should diverge at a critical polarization. To independently verify such predictions, we perform Variational Monte Carlo (VMC) calculations of the energy based on Jastrow-Slater wavefunctions after adding or subtracting a particle with a given momentum to a full Fermi sphere. In this way, we determine the quasi-particle dispersions, from which we extract the effective masses for different polarizations. The resulting effective masses turn out to be quite close to the non-interacting values, even though some evidence of an increase for the effective mass of the minority component appears close to the predicted value for the critical polarization. Preliminary results obtained for the majority component with the Fixed-node Diffusion Monte Carlo (DMC) method seem to indicate that DMC could lead to an increase of the effective masses in comparison with the VMC results. Finally, we point out further improvements of the trial wave-function and boundary conditions that would be necessary in future simulations to draw definite conclusions on the effective masses of the polarized unitary Fermi gas.
Resumo:
In questo lavoro di tesi è stato svolto uno studio analitico sul modello di Hubbard esteso unidimensionale al fine di osservare la presenza di eventuali risonanze che possano dare origine alla formazione di stati legati di due particelle. L'esistenza di uno stato legato stabile ha suscitato grande interesse negli ultimi anni, sia in ambito teorico che sperimentale, poichè è alla base di molti fenomeni che vengono osservati nei sistemi a molti corpi a basse temperature, come il BCS-BEC crossover. Pertanto si è ritenuto utile studiare il problema a due corpi nel modello di Hubbard esteso, che in generale non è integrabile. Il modello considerato contiene interazioni a primi e secondi vicini, in aggiunta all'interazione di contatto presente nel modello di Hubbard. Il problema è stato indagato analiticamente attraverso il Bethe ansatz, che consente di trovare tutti gli autovalori e le autofunzioni dell'Hamiltoniana. L'ansatz di Bethe sulla funzione d'onda è stato generalizzato per poter tener conto dei termini di interazione a più lungo raggio rispetto all'interazione di contatto. Si trova che, in questo modello, nel limite termodinamico, possono avvenire delle risonanze (o quasi-risonanze) in cui la lunghezza di scattering diverge, contrariamente a quanto avviene nel modello di Hubbard. Tale fenomeno si verifica quando il livello energetico discreto degli stati legati “tocca” la banda di scattering. Inoltre, con l'aggiunta di nuovi termini di interazione emergono nuovi stati legati. Nel caso in esame, si osservano due famiglie di stati legati, se lo spin totale delle due particelle è 1, e tre famiglie di stati legati, se lo spin totale è 0.
Resumo:
The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD) picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles. The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with the remarkable property of roaming between infinitely many critical points when moving along a renormalization group trajectory. Namely, the finite-temperature dimensionless ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless models flowing between adjacent points in the M_p series. Finally, employing both TBA and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current in off-equilibrium conformal field theories.