2 resultados para Quantum system
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Questo lavoro di tesi si inserisce nel recente filone di ricerca che ha lo scopo di studiare le strutture della Meccanica quantistica facendo impiego della geometria differenziale. In particolare, lo scopo della tesi è analizzare la geometria dello spazio degli stati quantistici puri e misti. Dopo aver riportato i risultati noti relativi a questo argomento, vengono calcolati esplicitamente il tensore metrico e la forma simplettica come parte reale e parte immaginaria del tensore di Fisher per le matrici densità 2×2 e 3×3. Quest’ultimo altro non é che la generalizzazione di uno strumento molto usato in Teoria dell’Informazione: l’Informazione di Fisher. Dal tensore di Fisher si può ottenere un tensore metrico non solo sulle orbite generate dall'azione del gruppo unitario ma anche su percorsi generati da trasformazioni non unitarie. Questo fatto apre la strada allo studio di tutti i percorsi possibili all'interno dello spazio delle matrici densità, che in questa tesi viene esplicitato per le matrici 2×2 e affrontato utilizzando il formalismo degli operatori di Kraus. Proprio grazie a questo formalismo viene introdotto il concetto di semi-gruppo dinamico che riflette la non invertibilità di evoluzioni non unitarie causate dall'interazione tra il sistema sotto esame e l’ambiente. Viene infine presentato uno schema per intraprendere la stessa analisi sulle matrici densità 3×3, e messe in evidenza le differenze con il caso 2×2.
Resumo:
Capire come ottenere l'informazione accessibile, cioè quanta informazione classica si può estrarre da un processo quantistico, è una delle questioni più intricate e affascinanti nell'ambito della teoria dell'informazione quantistica. Nonostante l'importanza della nozione di informazione accessibile non esistono metodi generali per poterla calcolare, esistono soltanto dei limiti, i più famosi dei quali sono il limite superiore di Holevo e il limite inferiore di Josza-Robb-Wootters. La seguente tesi fa riferimento a un processo che coinvolge due parti, Alice e Bob, che condividono due qubits. Si considera il caso in cui Bob effettua misure binarie sul suo qubit e quindi indirizza lo stato del qubit di Alice in due possibili stati. L'obiettivo di Alice è effettuare la misura ottimale nell'ottica di decretare in quale dei due stati si trova il suo qubit. Lo strumento scelto per studiare questo processo va sotto il nome di 'quantum steering ellipsoids formalism'. Esso afferma che lo stato di un sistema di due qubit può essere descritto dai vettori di Bloch di Alice e Bob e da un ellissoide nella sfera di Bloch di Alice generato da tutte le possibili misure di Bob. Tra tutti gli stati descritti da ellissoidi ce ne sono alcuni che manifestano particolari proprietà, per esempio gli stati di massimo volume. Considerando stati di massimo volume e misure binarie si è riuscito a trovare un limite inferiore all'informazione accessibile per un sistema di due qubit migliore del limite inferiore di Josza-Robb-Wootters. Un altro risultato notevole e inaspettato è che l'intuitiva e giustificata relazione 'distanza tra i punti nell'ellissoide - mutua informazione' non vale quando si confrontano coppie di punti ''vicine'' tra loro e lontane dai più distanti.