3 resultados para Quantum error correction
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
I Polar Codes sono la prima classe di codici a correzione d’errore di cui è stato dimostrato il raggiungimento della capacità per ogni canale simmetrico, discreto e senza memoria, grazie ad un nuovo metodo introdotto recentemente, chiamato ”Channel Polarization”. In questa tesi verranno descritti in dettaglio i principali algoritmi di codifica e decodifica. In particolare verranno confrontate le prestazioni dei simulatori sviluppati per il ”Successive Cancellation Decoder” e per il ”Successive Cancellation List Decoder” rispetto ai risultati riportati in letteratura. Al fine di migliorare la distanza minima e di conseguenza le prestazioni, utilizzeremo uno schema concatenato con il polar code come codice interno ed un CRC come codice esterno. Proporremo inoltre una nuova tecnica per analizzare la channel polarization nel caso di trasmissione su canale AWGN che risulta il modello statistico più appropriato per le comunicazioni satellitari e nelle applicazioni deep space. In aggiunta, investigheremo l’importanza di una accurata approssimazione delle funzioni di polarizzazione.
Resumo:
The space environment has always been one of the most challenging for communications, both at physical and network layer. Concerning the latter, the most common challenges are the lack of continuous network connectivity, very long delays and relatively frequent losses. Because of these problems, the normal TCP/IP suite protocols are hardly applicable. Moreover, in space scenarios reliability is fundamental. In fact, it is usually not tolerable to lose important information or to receive it with a very large delay because of a challenging transmission channel. In terrestrial protocols, such as TCP, reliability is obtained by means of an ARQ (Automatic Retransmission reQuest) method, which, however, has not good performance when there are long delays on the transmission channel. At physical layer, Forward Error Correction Codes (FECs), based on the insertion of redundant information, are an alternative way to assure reliability. On binary channels, when single bits are flipped because of channel noise, redundancy bits can be exploited to recover the original information. In the presence of binary erasure channels, where bits are not flipped but lost, redundancy can still be used to recover the original information. FECs codes, designed for this purpose, are usually called Erasure Codes (ECs). It is worth noting that ECs, primarily studied for binary channels, can also be used at upper layers, i.e. applied on packets instead of bits, offering a very interesting alternative to the usual ARQ methods, especially in the presence of long delays. A protocol created to add reliability to DTN networks is the Licklider Transmission Protocol (LTP), created to obtain better performance on long delay links. The aim of this thesis is the application of ECs to LTP.
Resumo:
A new method for the evaluation of the efficiency of parabolic trough collectors, called Rapid Test Method, is investigated at the Solar Institut Jülich. The basic concept is to carry out measurements under stagnation conditions. This allows a fast and inexpensive process due to the fact that no working fluid is required. With this approach, the temperature reached by the inner wall of the receiver is assumed to be the stagnation temperature and hence the average temperature inside the collector. This leads to a systematic error which can be rectified through the introduction of a correction factor. A model of the collector is simulated with COMSOL Multipyisics to study the size of the correction factor depending on collector geometry and working conditions. The resulting values are compared with experimental data obtained at a test rig at the Solar Institut Jülich. These results do not match with the simulated ones. Consequentially, it was not pos-sible to verify the model. The reliability of both the model with COMSOL Multiphysics and of the measurements are analysed. The influence of the correction factor on the rapid test method is also studied, as well as the possibility of neglecting it by measuring the receiver’s inner wall temperature where it receives the least amount of solar rays. The last two chapters analyse the specific heat capacity as a function of pressure and tem-perature and present some considerations about the uncertainties on the efficiency curve obtained with the Rapid Test Method.