10 resultados para Quantum Simulation, Quantum Simulators, QED, Lattice Gauge Theory

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La simulazione di un sistema quantistico complesso rappresenta ancora oggi una sfida estremamente impegnativa a causa degli elevati costi computazionali. La dimensione dello spazio di Hilbert cresce solitamente in modo esponenziale all'aumentare della taglia, rendendo di fatto impossibile una implementazione esatta anche sui più potenti calcolatori. Nel tentativo di superare queste difficoltà, sono stati sviluppati metodi stocastici classici, i quali tuttavia non garantiscono precisione per sistemi fermionici fortemente interagenti o teorie di campo in regimi di densità finita. Di qui, la necessità di un nuovo metodo di simulazione, ovvero la simulazione quantistica. L'idea di base è molto semplice: utilizzare un sistema completamente controllabile, chiamato simulatore quantistico, per analizzarne un altro meno accessibile. Seguendo tale idea, in questo lavoro di tesi si è utilizzata una teoria di gauge discreta con simmetria Zn per una simulazione dell'elettrodinamica quantistica in (1+1)D, studiando alcuni fenomeni di attivo interesse di ricerca, come il diagramma di fase o la dinamica di string-breaking, che generalmente non sono accessibili mediante simulazioni classiche. Si propone un diagramma di fase del modello caratterizzato dalla presenza di una fase confinata, in cui emergono eccitazioni mesoniche ed antimesoniche, cioè stati legati particella-antiparticella, ed una fase deconfinata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I modelli su reticolo con simmetrie SU(n) sono attualmente oggetto di studio sia dal punto di vista sperimentale, sia dal punto di vista teorico; particolare impulso alla ricerca in questo campo è stato dato dai recenti sviluppi in campo sperimentale per quanto riguarda la tecnica dell’intrappolamento di atomi ultrafreddi in un reticolo ottico. In questa tesi viene studiata, sia con tecniche analitiche sia con simulazioni numeriche, la generalizzazione del modello di Heisenberg su reticolo monodimensionale a simmetria SU(3). In particolare, viene proposto un mapping tra il modello di Heisenberg SU(3) e l’Hamiltoniana con simmetria SU(2) bilineare-biquadratica con spin 1. Vengono inoltre presentati nuovi risultati numerici ottenuti con l’algoritmo DMRG che confermano le previsioni teoriche in letteratura sul modello in esame. Infine è proposto un approccio per la formulazione della funzione di partizione dell’Hamiltoniana bilineare-biquadratica a spin-1 servendosi degli stati coerenti per SU(3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General Relativity (GR) is one of the greatest scientific achievements of the 20th century along with quantum theory. Despite the elegance and the accordance with experimental tests, these two theories appear to be utterly incompatible at fundamental level. Black holes provide a perfect stage to point out these difficulties. Indeed, classical GR fails to describe Nature at small radii, because nothing prevents quantum mechanics from affecting the high curvature zone, and because classical GR becomes ill-defined at r = 0 anyway. Rovelli and Haggard have recently proposed a scenario where a negative quantum pressure at the Planck scales stops and reverts the gravitational collapse, leading to an effective “bounce” and explosion, thus resolving the central singularity. This scenario, called Black Hole Fireworks, has been proposed in a semiclassical framework. The purpose of this thesis is twofold: - Compute the bouncing time by means of a pure quantum computation based on Loop Quantum Gravity; - Extend the known theory to a more realistic scenario, in which the rotation is taken into account by means of the Newman-Janis Algorithm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In questa tesi abbiamo studiato la quantizzazione di una teoria di gauge di forme differenziali su spazi complessi dotati di una metrica di Kaehler. La particolarità di queste teorie risiede nel fatto che esse presentano invarianze di gauge riducibili, in altre parole non indipendenti tra loro. L'invarianza sotto trasformazioni di gauge rappresenta uno dei pilastri della moderna comprensione del mondo fisico. La caratteristica principale di tali teorie è che non tutte le variabili sono effettivamente presenti nella dinamica e alcune risultano essere ausiliarie. Il motivo per cui si preferisce adottare questo punto di vista è spesso il fatto che tali teorie risultano essere manifestamente covarianti sotto importanti gruppi di simmetria come il gruppo di Lorentz. Uno dei metodi più usati nella quantizzazione delle teorie di campo con simmetrie di gauge, richiede l'introduzione di campi non fisici detti ghosts e di una simmetria globale e fermionica che sostituisce l'iniziale invarianza locale di gauge, la simmetria BRST. Nella presente tesi abbiamo scelto di utilizzare uno dei più moderni formalismi per il trattamento delle teorie di gauge: il formalismo BRST Lagrangiano di Batalin-Vilkovisky. Questo metodo prevede l'introduzione di ghosts per ogni grado di riducibilità delle trasformazioni di gauge e di opportuni “antifields" associati a ogni campo precedentemente introdotto. Questo formalismo ci ha permesso di arrivare direttamente a una completa formulazione in termini di path integral della teoria quantistica delle (p,0)-forme. In particolare esso permette di dedurre correttamente la struttura dei ghost della teoria e la simmetria BRST associata. Per ottenere questa struttura è richiesta necessariamente una procedura di gauge fixing per eliminare completamente l'invarianza sotto trasformazioni di gauge. Tale procedura prevede l'eliminazione degli antifields in favore dei campi originali e dei ghosts e permette di implementare, direttamente nel path integral condizioni di gauge fixing covarianti necessari per definire correttamente i propagatori della teoria. Nell'ultima parte abbiamo presentato un’espansione dell’azione efficace (euclidea) che permette di studiare le divergenze della teoria. In particolare abbiamo calcolato i primi coefficienti di tale espansione (coefficienti di Seeley-DeWitt) tramite la tecnica dell'heat kernel. Questo calcolo ha tenuto conto dell'eventuale accoppiamento a una metrica di background cosi come di un possibile ulteriore accoppiamento alla traccia della connessione associata alla metrica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some of the most interesting phenomena that arise from the developments of the modern physics are surely vacuum fluctuations. They appear in different branches of physics, such as Quantum Field Theory, Cosmology, Condensed Matter Physics, Atomic and Molecular Physics, and also in Mathematical Physics. One of the most important of these vacuum fluctuations, sometimes called "zero-point energy", as well as one of the easiest quantum effect to detect, is the so-called Casimir effect. The purposes of this thesis are: - To propose a simple retarded approach for dynamical Casimir effect, thus a description of this vacuum effect when we have moving boundaries. - To describe the behaviour of the force acting on a boundary, due to its self-interaction with the vacuum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In questa tesi vengono presentati i piu recenti risultati relativi all'estensione della teoria dei campi localmente covariante a geometrie che permettano di descrivere teorie di campo supersimmetriche. In particolare, si mostra come la definizione assiomatica possa essere generalizzata, mettendo in evidenza le problematiche rilevanti e le tecniche utilizzate in letteratura per giungere ad una loro risoluzione. Dopo un'introduzione alle strutture matematiche di base, varieta Lorentziane e operatori Green-iperbolici, viene definita l'algebra delle osservabili per la teoria quantistica del campo scalare. Quindi, costruendo un funtore dalla categoria degli spazio-tempo globalmente iperbolici alla categoria delle *-algebre, lo stesso schema viene proposto per le teorie di campo bosoniche, purche definite da un operatore Green-iperbolico su uno spazio-tempo globalmente iperbolico. Si procede con lo studio delle supervarieta e alla definizione delle geometrie di background per le super teorie di campo: le strutture di super-Cartan. Associando canonicamente ad ognuna di esse uno spazio-tempo ridotto, si introduce la categoria delle strutture di super-Cartan (ghsCart) il cui spazio-tempo ridotto e globalmente iperbolico. Quindi, si mostra, in breve, come e possibile costruire un funtore da una sottocategoria di ghsCart alla categoria delle super *-algebre e si conclude presentando l'applicazione dei risultati esposti al caso delle strutture di super-Cartan in dimensione 2|2.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In questa tesi abbiamo studiato il comportamento delle entropie di Entanglement e dello spettro di Entanglement nel modello XYZ attraverso delle simulazioni numeriche. Le formule per le entropie di Von Neumann e di Renyi nel caso di una catena bipartita infinita esistevano già, ma mancavano ancora dei test numerici dettagliati. Inoltre, rispetto alla formula per l'Entropia di Entanglement di J. Cardy e P. Calabrese per sistemi non critici, tali relazioni presentano delle correzioni che non hanno ancora una spiegazione analitica: i risultati delle simulazioni numeriche ne hanno confermato la presenza. Abbiamo inoltre testato l'ipotesi che lo Schmidt Gap sia proporzionale a uno dei parametri d'ordine della teoria, e infine abbiamo simulato numericamente l'andamento delle Entropie e dello spettro di Entanglement in funzione della lunghezza della catena di spin. Ciò è stato possibile solo introducendo dei campi magnetici ''ad hoc'' nella catena, con la proprietà che l'andamento delle suddette quantità varia a seconda di come vengono disposti tali campi. Abbiamo quindi discusso i vari risultati ottenuti.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In questo lavoro viene presentato un recente modello di buco nero che implementa le proprietà quantistiche di quelle regioni dello spaziotempo dove non possono essere ignorate, pena l'implicazione di paradossi concettuali e fenomenologici. In suddetto modello, la regione di spaziotempo dominata da comportamenti quantistici si estende oltre l'orizzonte del buco nero e suscita un'inversione, o più precisamente un effetto tunnel, della traiettoria di collasso della stella in una traiettoria di espansione simmetrica nel tempo. L'inversione impiega un tempo molto lungo per chi assiste al fenomeno a grandi distanze, ma inferiore al tempo di evaporazione del buco nero tramite radiazione di Hawking, trascurata e considerata come un effetto dissipativo da studiarsi in un secondo tempo. Il resto dello spaziotempo, fuori dalla regione quantistica, soddisfa le equazioni di Einstein. Successivamente viene presentata la teoria della Gravità Quantistica a Loop (LQG) che permetterebbe di studiare la dinamica della regione quantistica senza far riferimento a una metrica classica, ma facendo leva sul contenuto relazionale del tessuto spaziotemporale. Il campo gravitazionale viene riformulato in termini di variabili hamiltoniane in uno spazio delle fasi vincolato e con simmetria di gauge, successivamente promosse a operatori su uno spazio di Hilbert legato a una vantaggiosa discretizzazione dello spaziotempo. La teoria permette la definizione di un'ampiezza di transizione fra stati quantistici di geometria spaziotemporale, applicabile allo studio della regione quantistica nel modello di buco nero proposto. Infine vengono poste le basi per un calcolo in LQG dell'ampiezza di transizione del fenomeno di rimbalzo quantistico all'interno del buco nero, e di conseguenza per un calcolo quantistico del tempo di rimbalzo nel riferimento di osservatori statici a grande distanza da esso, utile per trattare a posteriori un modello che tenga conto della radiazione di Hawking e, auspicatamente, fornisca una possibile risoluzione dei problemi legati alla sua esistenza.