1 resultado para Quantitative information
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Archive of European Integration (1)
- Aston University Research Archive (23)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (126)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (27)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CentAUR: Central Archive University of Reading - UK (24)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (11)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (13)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (9)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (22)
- DRUM (Digital Repository at the University of Maryland) (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Hospitais da Universidade de Coimbra (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (91)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (4)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (10)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (46)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (18)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (7)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (3)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (21)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (114)
- Scielo Saúde Pública - SP (50)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (19)
- Universidade do Minho (23)
- Universidade dos Açores - Portugal (3)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (33)
- Université de Montréal (2)
- Université de Montréal, Canada (8)
- University of Michigan (4)
- University of Queensland eSpace - Australia (153)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
Resumo:
As a consequence of the diffusion of next generation sequencing techniques, metagenomics databases have become one of the most promising repositories of information about features and behavior of microorganisms. One of the subjects that can be studied from those data are bacteria populations. Next generation sequencing techniques allow to study the bacteria population within an environment by sampling genetic material directly from it, without the needing of culturing a similar population in vitro and observing its behavior. As a drawback, it is quite complex to extract information from those data and usually there is more than one way to do that; AMR is no exception. In this study we will discuss how the quantified AMR, which regards the genotype of the bacteria, can be related to the bacteria phenotype and its actual level of resistance against the specific substance. In order to have a quantitative information about bacteria genotype, we will evaluate the resistome from the read libraries, aligning them against CARD database. With those data, we will test various machine learning algorithms for predicting the bacteria phenotype. The samples that we exploit should resemble those that could be obtained from a natural context, but are actually produced by a read libraries simulation tool. In this way we are able to design the populations with bacteria of known genotype, so that we can relay on a secure ground truth for training and testing our algorithms.