7 resultados para Project centred learning
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L’istruzione superiore in Europa è stata oggetto di un significativo processo di riforma: è aumentato l’interesse per un modello di apprendimento intorno ai progetti, centrato sullo studente, che favorisse lo sviluppo di competenze trasversali – il project-based learning (PBL). Inserire il PBL nelle Università richiede un processo di innovazione didattica: il curriculum di un corso PBL e le competenze richieste all’insegnante si differenziano dall’apprendimento tradizionale. Senza un'adeguata attenzione ai metodi di supporto per insegnanti e studenti, questi approcci innovativi non saranno ampiamente adottati. L’obiettivo di questo studio è determinare in che modo sia possibile implementare un corso PBL non presenziato da figure esperte di PBL. Le domande della ricerca sono: è possibile implementare efficacemente un approccio PBL senza il coinvolgimento di esperti dei metodi di progettazione? come si declinano i ruoli della facilitazione secondo questa configurazione: come si definisce il ruolo di tutor d’aula? come rafforzare il supporto per l’implementazione del corso? Per rispondere alle domande di ricerca è stata utilizzata la metodologia AIM-R. Viene presentata la prima iterazione dell’implementazione di un corso di questo tipo, durante la quale sono state svolte attività di ricerca e raccolta dati. L’attività di facilitazione è affidata a tre figure diverse: docente, tutor d’aula e coach professionisti. Su questa base, sono stati definiti gli elementi costituenti un kit di materiale a supporto per l’implementazione di corsi PBL. Oltre a un set di documenti e strumenti condivisi, sono stati elaborati i vademecum per guidare studenti, tutor e docenti all’implementazione di questo tipo di corsi. Ricerche future dovranno essere volte a identificare fattori aggiuntivi che rendano applicabile il kit di supporto per corsi basati su un modello diverso dal Tech to Market o che utilizzino strumenti di progettazione diversi da quelli proposti durante la prima iterazione.
Resumo:
Reinforcement learning is a particular paradigm of machine learning that, recently, has proved times and times again to be a very effective and powerful approach. On the other hand, cryptography usually takes the opposite direction. While machine learning aims at analyzing data, cryptography aims at maintaining its privacy by hiding such data. However, the two techniques can be jointly used to create privacy preserving models, able to make inferences on the data without leaking sensitive information. Despite the numerous amount of studies performed on machine learning and cryptography, reinforcement learning in particular has never been applied to such cases before. Being able to successfully make use of reinforcement learning in an encrypted scenario would allow us to create an agent that efficiently controls a system without providing it with full knowledge of the environment it is operating in, leading the way to many possible use cases. Therefore, we have decided to apply the reinforcement learning paradigm to encrypted data. In this project we have applied one of the most well-known reinforcement learning algorithms, called Deep Q-Learning, to simple simulated environments and studied how the encryption affects the training performance of the agent, in order to see if it is still able to learn how to behave even when the input data is no longer readable by humans. The results of this work highlight that the agent is still able to learn with no issues whatsoever in small state spaces with non-secure encryptions, like AES in ECB mode. For fixed environments, it is also able to reach a suboptimal solution even in the presence of secure modes, like AES in CBC mode, showing a significant improvement with respect to a random agent; however, its ability to generalize in stochastic environments or big state spaces suffers greatly.
Resumo:
The aim of this thesis project is to automatically localize HCC tumors in the human liver and subsequently predict if the tumor will undergo microvascular infiltration (MVI), the initial stage of metastasis development. The input data for the work have been partially supplied by Sant'Orsola Hospital and partially downloaded from online medical databases. Two Unet models have been implemented for the automatic segmentation of the livers and the HCC malignancies within it. The segmentation models have been evaluated with the Intersection-over-Union and the Dice Coefficient metrics. The outcomes obtained for the liver automatic segmentation are quite good (IOU = 0.82; DC = 0.35); the outcomes obtained for the tumor automatic segmentation (IOU = 0.35; DC = 0.46) are, instead, affected by some limitations: it can be state that the algorithm is almost always able to detect the location of the tumor, but it tends to underestimate its dimensions. The purpose is to achieve the CT images of the HCC tumors, necessary for features extraction. The 14 Haralick features calculated from the 3D-GLCM, the 120 Radiomic features and the patients' clinical information are collected to build a dataset of 153 features. Now, the goal is to build a model able to discriminate, based on the features given, the tumors that will undergo MVI and those that will not. This task can be seen as a classification problem: each tumor needs to be classified either as “MVI positive” or “MVI negative”. Techniques for features selection are implemented to identify the most descriptive features for the problem at hand and then, a set of classification models are trained and compared. Among all, the models with the best performances (around 80-84% ± 8-15%) result to be the XGBoost Classifier, the SDG Classifier and the Logist Regression models (without penalization and with Lasso, Ridge or Elastic Net penalization).
Resumo:
The scientific success of the LHC experiments at CERN highly depends on the availability of computing resources which efficiently store, process, and analyse the amount of data collected every year. This is ensured by the Worldwide LHC Computing Grid infrastructure that connect computing centres distributed all over the world with high performance network. LHC has an ambitious experimental program for the coming years, which includes large investments and improvements both for the hardware of the detectors and for the software and computing systems, in order to deal with the huge increase in the event rate expected from the High Luminosity LHC (HL-LHC) phase and consequently with the huge amount of data that will be produced. Since few years the role of Artificial Intelligence has become relevant in the High Energy Physics (HEP) world. Machine Learning (ML) and Deep Learning algorithms have been successfully used in many areas of HEP, like online and offline reconstruction programs, detector simulation, object reconstruction, identification, Monte Carlo generation, and surely they will be crucial in the HL-LHC phase. This thesis aims at contributing to a CMS R&D project, regarding a ML "as a Service" solution for HEP needs (MLaaS4HEP). It consists in a data-service able to perform an entire ML pipeline (in terms of reading data, processing data, training ML models, serving predictions) in a completely model-agnostic fashion, directly using ROOT files of arbitrary size from local or distributed data sources. This framework has been updated adding new features in the data preprocessing phase, allowing more flexibility to the user. Since the MLaaS4HEP framework is experiment agnostic, the ATLAS Higgs Boson ML challenge has been chosen as physics use case, with the aim to test MLaaS4HEP and the contribution done with this work.
Resumo:
This thesis is focused on the design of a flexible, dynamic and innovative telecommunication's system for future 6G applications on vehicular communications. The system is based on the development of drones acting as mobile base stations in an urban scenario to cope with the increasing traffic demand and avoid network's congestion conditions. In particular, the exploitation of Reinforcement Learning algorithms is used to let the drone learn autonomously how to behave in a scenario full of obstacles with the goal of tracking and serve the maximum number of moving vehicles, by at the same time, minimizing the energy consumed to perform its tasks. This project is an extraordinary opportunity to open the doors to a new way of applying and develop telecommunications in an urban scenario by mixing it to the rising world of the Artificial Intelligence.
Resumo:
Many real-word decision- making problems are defined based on forecast parameters: for example, one may plan an urban route by relying on traffic predictions. In these cases, the conventional approach consists in training a predictor and then solving an optimization problem. This may be problematic since mistakes made by the predictor may trick the optimizer into taking dramatically wrong decisions. Recently, the field of Decision-Focused Learning overcomes this limitation by merging the two stages at training time, so that predictions are rewarded and penalized based on their outcome in the optimization problem. There are however still significant challenges toward a widespread adoption of the method, mostly related to the limitation in terms of generality and scalability. One possible solution for dealing with the second problem is introducing a caching-based approach, to speed up the training process. This project aims to investigate these techniques, in order to reduce even more, the solver calls. For each considered method, we designed a particular smart sampling approach, based on their characteristics. In the case of the SPO method, we ended up discovering that it is only necessary to initialize the cache with only several solutions; those needed to filter the elements that we still need to properly learn. For the Blackbox method, we designed a smart sampling approach, based on inferred solutions.
Resumo:
The emissions estimation, both during homologation and standard driving, is one of the new challenges that automotive industries have to face. The new European and American regulation will allow a lower and lower quantity of Carbon Monoxide emission and will require that all the vehicles have to be able to monitor their own pollutants production. Since numerical models are too computationally expensive and approximated, new solutions based on Machine Learning are replacing standard techniques. In this project we considered a real V12 Internal Combustion Engine to propose a novel approach pushing Random Forests to generate meaningful prediction also in extreme cases (extrapolation, very high frequency peaks, noisy instrumentation etc.). The present work proposes also a data preprocessing pipeline for strongly unbalanced datasets and a reinterpretation of the regression problem as a classification problem in a logarithmic quantized domain. Results have been evaluated for two different models representing a pure interpolation scenario (more standard) and an extrapolation scenario, to test the out of bounds robustness of the model. The employed metrics take into account different aspects which can affect the homologation procedure, so the final analysis will focus on combining all the specific performances together to obtain the overall conclusions.