9 resultados para Production system design
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.
Resumo:
La Lean Production è un tema di estrema attualità per tutte le aziende che abbiano compreso l’importanza di produrre di più, con le risorse che si hanno a disposizione, eliminando sistematicamente tutte le attività che non creano valore aggiunto. La Produzione Snella è diventato un metodo per incrementare la competitività, riducendo l’incertezza e aumentando il servizio fornito al cliente. Nella realtà attuale vi è ancora una scarsa diffusione dei concetti Lean. Le cause di questo problema sono imputabili soprattutto alla cultura del management aziendale, alla mancanza di efficaci strumenti tecnologici a supporto, e in alcuni casi, la scarsa disponibilità delle imprese ad abbracciare la filosofica “snella”. La presente tesi, dopo una panoramica introduttiva su l’origine e l’evoluzione del Pensiero Snello e l’analisi di tutti i tools disponibili per combattere lo spreco; si propone di analizzare l’applicazione degli stessi in Gambro Dasco, multinazionale biomedicale leader nella vendita delle sue apparecchiature per dialisi.
Resumo:
Globalization has increased the pressure on organizations and companies to operate in the most efficient and economic way. This tendency promotes that companies concentrate more and more on their core businesses, outsource less profitable departments and services to reduce costs. By contrast to earlier times, companies are highly specialized and have a low real net output ratio. For being able to provide the consumers with the right products, those companies have to collaborate with other suppliers and form large supply chains. An effect of large supply chains is the deficiency of high stocks and stockholding costs. This fact has lead to the rapid spread of Just-in-Time logistic concepts aimed minimizing stock by simultaneous high availability of products. Those concurring goals, minimizing stock by simultaneous high product availability, claim for high availability of the production systems in the way that an incoming order can immediately processed. Besides of design aspects and the quality of the production system, maintenance has a strong impact on production system availability. In the last decades, there has been many attempts to create maintenance models for availability optimization. Most of them concentrated on the availability aspect only without incorporating further aspects as logistics and profitability of the overall system. However, production system operator’s main intention is to optimize the profitability of the production system and not the availability of the production system. Thus, classic models, limited to represent and optimize maintenance strategies under the light of availability, fail. A novel approach, incorporating all financial impacting processes of and around a production system, is needed. The proposed model is subdivided into three parts, maintenance module, production module and connection module. This subdivision provides easy maintainability and simple extendability. Within those modules, all aspect of production process are modeled. Main part of the work lies in the extended maintenance and failure module that offers a representation of different maintenance strategies but also incorporates the effect of over-maintaining and failed maintenance (maintenance induced failures). Order release and seizing of the production system are modeled in the production part. Due to computational power limitation, it was not possible to run the simulation and the optimization with the fully developed production model. Thus, the production model was reduced to a black-box without higher degree of details.
Resumo:
In the last years, the importance of locating people and objects and communicating with them in real time has become a common occurrence in every day life. Nowadays, the state of the art of location systems for indoor environments has not a dominant technology as instead occurs in location systems for outdoor environments, where GPS is the dominant technology. In fact, each location technology for indoor environments presents a set of features that do not allow their use in the overall application scenarios, but due its characteristics, it can well coexist with other similar technologies, without being dominant and more adopted than the others indoor location systems. In this context, the European project SELECT studies the opportunity of collecting all these different features in an innovative system which can be used in a large number of application scenarios. The goal of this project is to realize a wireless system, where a network of fixed readers able to query one or more tags attached to objects to be located. The SELECT consortium is composed of European institutions and companies, including Datalogic S.p.A. and CNIT, which deal with software and firmware development of the baseband receiving section of the readers, whose function is to acquire and process the information received from generic tagged objects. Since the SELECT project has an highly innovative content, one of the key stages of the system design is represented by the debug phase. This work aims to study and develop tools and techniques that allow to perform the debug phase of the firmware of the baseband receiving section of the readers.
Resumo:
The rapid development in the field of lighting and illumination allows low energy consumption and a rapid growth in the use, and development of solid-state sources. As the efficiency of these devices increases and their cost decreases there are predictions that they will become the dominant source for general illumination in the short term. The objective of this thesis is to study, through extensive simulations in realistic scenarios, the feasibility and exploitation of visible light communication (VLC) for vehicular ad hoc networks (VANETs) applications. A brief introduction will introduce the new scenario of smart cities in which visible light communication will become a fundamental enabling technology for the future communication systems. Specifically, this thesis focus on the acquisition of several, frequent, and small data packets from vehicles, exploited as sensors of the environment. The use of vehicles as sensors is a new paradigm to enable an efficient environment monitoring and an improved traffic management. In most cases, the sensed information must be collected at a remote control centre and one of the most challenging aspects is the uplink acquisition of data from vehicles. My thesis discusses the opportunity to take advantage of short range vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications to offload the cellular networks. More specifically, it discusses the system design and assesses the obtainable cellular resource saving, by considering the impact of the percentage of vehicles equipped with short range communication devices, of the number of deployed road side units, and of the adopted routing protocol. When short range communications are concerned, WAVE/IEEE 802.11p is considered as standard for VANETs. Its use together with VLC will be considered in urban vehicular scenarios to let vehicles communicate without involving the cellular network. The study is conducted by simulation, considering both a simulation platform (SHINE, simulation platform for heterogeneous interworking networks) developed within the Wireless communication Laboratory (Wilab) of the University of Bologna and CNR, and network simulator (NS3). trying to realistically represent all the wireless network communication aspects. Specifically, simulation of vehicular system was performed and introduced in ns-3, creating a new module for the simulator. This module will help to study VLC applications in VANETs. Final observations would enhance and encourage potential research in the area and optimize performance of VLC systems applications in the future.
Resumo:
This paperwork compares the a numerical validation of the finite element model (FEM) with respect the experimental tests of a new generation wind turbine blade designed by TPI Composites Inc. called BSDS (Blade System Design Study). The research is focused on the analysis by finite element (FE) of the BSDS blade and its comparison with respect the experimental data from static and dynamic investigations. The goal of the research is to create a general procedure which is based on a finite element model and will be used to create an accurate digital copy for any kind of blade. The blade prototype was created in SolidWorks and the blade of Sandia National Laboratories Blade System Design Study was accurately reproduced. At a later stage the SolidWorks model was imported in Ansys Mechanical APDL where the shell geometry was created and modal, static and fatigue analysis were carried out. The outcomes of the FEM analysis were compared with the real test on the BSDS blade at Clarkson University laboratory carried out by a new procedures called Blade Test Facility that includes different methods for both the static and dynamic test of the wind turbine blade. The outcomes from the FEM analysis reproduce the real behavior of the blade subjected to static loads in a very satisfying way. A most detailed study about the material properties could improve the accuracy of the analysis.
Resumo:
With the outlook of improving seismic vulnerability assessment for the city of Bishkek (Kyrgyzstan), the global dynamic behaviour of four nine-storey r.c. large-panel buildings in elastic regime is studied. The four buildings were built during the Soviet era within a serial production system. Since they all belong to the same series, they have very similar geometries both in plan and in height. Firstly, ambient vibration measurements are performed in the four buildings. The data analysis composed of discrete Fourier transform, modal analysis (frequency domain decomposition) and deconvolution interferometry, yields the modal characteristics and an estimate of the linear impulse response function for the structures of the four buildings. Then, finite element models are set up for all four buildings and the results of the numerical modal analysis are compared with the experimental ones. The numerical models are finally calibrated considering the first three global modes and their results match the experimental ones with an error of less then 20%.
Resumo:
L'elaborato è il risultato del progetto di tesi svolto presso l’azienda Lift Truck Equipment L.T.E. di Ostellato (Ferrara) che opera nell’ambito della progettazione e produzione di gruppi di sollevamento ed attrezzature per carrelli elevatori all’interno del gruppo Toyota Material Handling. Il progetto è stato svolto nel periodo da gennaio a marzo 2016 in collaborazione con l’ufficio di Ingegneria di processo di L.T.E. e riguarda l’applicazione del metodo MAGEC (Modi e Analisi dei Guasti e delle Criticità) per l’analisi dei guasti di una linea produttiva dell’azienda, la Rail Line. Nel primo capitolo viene inquadrato il sistema produttivo dell’azienda in aderenza con la filosofia del TPS (Toyota Production System) per chiarire l’ambito in cui è nato il progetto, le motivazioni che hanno portato al suo sviluppo e l’ottica secondo cui è stato svolto. Nel secondo capitolo è fornita una descrizione dell’approccio utilizzato, che consiste in una variante della FMECA, il metodo più utilizzato per le analisi in ambito affidabilistico. Inoltre sono riportate le attività di pianificazione che sono state svolte preliminarmente all’inizio del progetto. Successivamente nel terzo capitolo sono illustrati in modo dettagliato i vari step dell’implementazione del metodo, dalla raccolta dati, effettuata presso l’azienda, all’elaborazione. L’ultimo capitolo è dedicato ai risultati dell’analisi e a una breve descrizione di come tali risultati sono stati utilizzati nelle attività di manutenzione preventiva.