3 resultados para Production control.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il seguente elaborato è il risultato di uno stage di sei mesi, svolto presso l’azienda Bosch Rexroth Oil Control S.p.A.. L’ente presso cui è stato svolto il tirocinio è l’Industrial Engineering. In particolare è stata compiuta un’analisi dei flussi delle cartucce meccaniche, una famiglia di valvole oleodinamiche. Il lavoro si è sviluppato in tre fasi: nella prima è stata fatta un’analisi dei dati di giacenza, tempi e cicli di lavoro delle cartucce; nella seconda fase si è proposta l’introduzione di un nuovo sistema di picking gestito con supermarket a kanban; nell’ultima fase si è valutata la convenienza dai punti di vista tecnico ed economico del progetto.
Resumo:
Isochrysis galbana is a widely-used strain in aquaculture in spite of its low productivity. To maximize the productivity of processes based on this microalgae strain, a model was developed considering the influence of irradiance, temperature, pH and dissolved oxygen concentration on the photosynthesis and respiration rate. Results demonstrate that this strain tolerates temperatures up to 35ºC but it is highly sensitive to irradiances higher than 500 µE·m-2·s-1 and dissolved oxygen concentrations higher than 11 mg·l-1. With the researcher group of the “Universidad de Almeria”, the developed model was validated using data from an industrial-scale outdoor tubular photobioreactor demonstrating that inadequate temperature and dissolved oxygen concentrations reduce productivity to half that which is maximal, according to light availability under real outdoor conditions. The developed model is a useful tool for managing working processes, especially in the development of new processes based on this strain and to take decisions regarding optimal control strategies. Also the outdoor production of Isochrysis galbana T-iso in industrial size tubular photobioreactors (3.0 m3) has been studied. Experiments were performed modifying the dilution rate and evaluating the biomass productivity and quality, in addition to the overall performance of the system. Results confirmed that T-iso can be produced outdoor at commercial scale in continuous mode, productivities up to 20 g·m-2·day-1 of biomass rich in proteins (45%) and lipids (25%) being obtained. The utilization of this type of photobioreactors allows controlling the contamination and pH of the cultures, but daily variation of solar radiation imposes the existence of inadequate dissolved oxygen concentration and temperature at which the cells are exposed to inside the reactor. Excessive dissolved oxygen reduced the biomass productivity to 68% of maximal, whereas inadequate temperature reduces to 63% of maximal. Thus, optimally controlling these parameters the biomass productivity can be duplicated. These results confirm the potential to produce this valuable strain at commercial scale in optimally designed/operated tubular photobioreactors as a biotechnological industry.
Resumo:
Metal nanowires (NWs) - nanostructures 20-100 nm in diameter and up to tens of micrometers long - behave as waveguides when irradiated with light with wavelength much greater than their diameter. This is due to collective excitations of free electrons (plasmons) in the metal which couple to light and travel on the surface of the nanowire. This effect can be used to efficiently absorb laser pulses to produce dense and hot plasma on special nanostructured targets with metal nanowires vertically aligned on the surface. In this thesis work, nanostructured targets with different parameters (length, diameter, metal and fabrication process) have been irradiated with infrared laser light. X-ray flux emitted by the cooling plasma is measured during irradiation, and the depth of craters formed on the target is measured later. This data is used to choose which target parameters are best for plasma production. Different targets are compared with each other and against a control, non-nanostructured (bulk) target. As will be shown, highly significant (> 5 sigma) differences are found between targets with different nanostructures, and between nanostructured and bulk target. This differences are very difficult to explain whithout accounting for the nanostructures in the targets. Therefore, data collected and analized in this thesis work supports the hypotesys that nanostructured targets perform better than bulk targets for laser plasma production purposes, and provides useful indications for optimization of NWS' parameters.