6 resultados para Process parameters
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The effect of process parameters on the creep-fatigue behavior of a hot-work tool steel for aluminum extrusion die was investigated through a technological test in which the specimen geometry resembled the mandrel of a hollow extrusion die. Tests were performed on a Gleeble thermomechanical simulator by heating the specimen using jouleâs effect and by applying cyclic loading up to 6.30 h or till specimen failure. Displacements during the tests at 380, 490, 540 and 580°C and under the average stresses of 400, 600 and 800 MPa were determined. In the first set of test a dwell time of 3 min was introduced during each of the tests to understand the creep behavior. The results showed that the test could indeed physically simulate the cyclic loading on the hollow die during extrusion and reveal all the mechanisms of creep-fatigue interaction. In the second set a pure fatigue laod were induced and in the third set a static creep load were induced in the specimens. Furher type of tests, finite element and microstructural analysis were presented.
Resumo:
Foundry aluminum alloys play a fundamental role in several industrial fields, as they are employed in the production of several components in a wide range of applications. Moreover, these alloys can be employed as matrix for the development of Metal Matrix Composites (MMC), whose reinforcing phases may have different composition, shape and dimension. Ceramic particle reinforced MMCs are particular interesting due to their isotropic properties and their high temperature resistance. For this kind of composites, usually, decreasing the size of the reinforcing phase leads to the increase of mechanical properties. For this reason, in the last 30 years, the research has developed micro-reinforced composites at first, characterized by low ductility, and more recently nano-reinforced ones (the so called metal matrix nanocomposite, MMNCs). The nanocomposites can be obtained through several production routes: they can be divided in in-situ techniques, where the reinforcing phase is generated during the composite production through appropriate chemical reactions, and ex situ techniques, where ceramic dispersoids are added to the matrix once already formed. The enhancement in mechanical properties of MMNCs is proved by several studies; nevertheless, it is necessary to address some issues related to each processing route, as the control of process parameters and the effort to obtain an effective dispersion of the nanoparticles in the matrix, which sometimes actually restrict the use of these materials at industrial level. In this work of thesis, a feasibility study and implementation of production processes for Aluminum and AlSi7Mg based-MMNCs was conducted. The attention was focused on the in-situ process of gas bubbling, with the aim to obtain an aluminum oxide reinforcing phase, generated by the chemical reaction between the molten matrix and industrial dry air injected in the melt. Moreover, for what concerns the ex-situ techniques, stir casting process was studied and applied to introduce alumina nanoparticles in the same matrix alloys. The obtained samples were characterized through optical and electronic microscopy, then by micro-hardness tests, in order to evaluate possible improvements in mechanical properties of the materials.
Resumo:
Over the last few decades, polysaccharides have gained increasing attention in the biomedical and drug delivery fields. Among them, glucomannan (GM) has become a particularly interesting polymer in the nutraceutical, pharmaceutical and cosmeceutical field, however the high molecular weight of this natural polymer is the cause of the limits to its application that reflected in a poor solubility in water.Reduce the molecular weight could improve its use and at the same time does not eliminate its properties. In this study, we investigated the ability of enzymes to hydrolyze the polysaccharide structure of glucomannan by two commercial enzymes: Fungamyl Super AX and Celluclast BG. The purpose of the thesis was to identify the enzymatic activity and the process parameters ( pH and temperature) that influence the catalytic activity of the enzymes, the molecular size and the viscosity of products released after enzymatic hydrolysis of glucomannan.
Resumo:
One of the biggest challenges that contaminant hydrogeology is facing, is how to adequately address the uncertainty associated with model predictions. Uncertainty arise from multiple sources, such as: interpretative error, calibration accuracy, parameter sensitivity and variability. This critical issue needs to be properly addressed in order to support environmental decision-making processes. In this study, we perform Global Sensitivity Analysis (GSA) on a contaminant transport model for the assessment of hydrocarbon concentration in groundwater. We provide a quantification of the environmental impact and, given the incomplete knowledge of hydrogeological parameters, we evaluate which are the most influential, requiring greater accuracy in the calibration process. Parameters are treated as random variables and a variance-based GSA is performed in a optimized numerical Monte Carlo framework. The Sobol indices are adopted as sensitivity measures and they are computed by employing meta-models to characterize the migration process, while reducing the computational cost of the analysis. The proposed methodology allows us to: extend the number of Monte Carlo iterations, identify the influence of uncertain parameters and lead to considerable saving computational time obtaining an acceptable accuracy.
Resumo:
Nowadays the environmental issues and the climatic change play fundamental roles in the design of urban spaces. Our cities are growing in size, many times only following immediate needs without a long-term vision. Consequently, the sustainable development has become not only an ethical but also a strategic need: we can no longer afford an uncontrolled urban expansion. One serious effect of the territory industrialisation process is the increase of urban air and surfaces temperatures compared to the outlying rural surroundings. This difference in temperature is what constitutes an urban heat island (UHI). The purpose of this study is to provide a clarification on the role of urban surfacing materials in the thermal dynamics of an urban space, resulting in useful indications and advices in mitigating UHI. With this aim, 4 coloured concrete bricks were tested, measuring their emissivity and building up their heat release curves using infrared thermography. Two emissivity evaluation procedures were carried out and subsequently put in comparison. Samples performances were assessed, and the influence of the colour on the thermal behaviour was investigated. In addition, some external pavements were analysed. Albedo and emissivity parameters were evaluated in order to understand their thermal behaviour in different conditions. Surfaces temperatures were recorded in a one-day measurements campaign. ENVI-met software was used to simulate how the tested materials would behave in two typical urban scenarios: a urban canyon and a urban heat basin. Improvements they can carry to the urban microclimate were investigated. Emissivities obtained for the bricks ranged between 0.92 and 0.97, suggesting a limited influence of the colour on this parameter. Nonetheless, white concrete brick showed the best thermal performance, whilst the black one the worst; red and yellow ones performed pretty identical intermediate trends. De facto, colours affected the overall thermal behaviour. Emissivity parameter was measured in the outdoor work, getting (as expected) high values for the asphalts. Albedo measurements, conducted with a sunshine pyranometer, proved the improving effect given by the yellow paint in terms of solar reflection, and the bad influence of haze on the measurement accuracy. ENVI-met simulations gave a demonstration on the effectiveness in thermal improving of some tested materials. In particular, results showed good performances for white bricks and granite in the heat basin scenario, and painted concrete and macadam in the urban canyon scenario. These materials can be considered valuable solutions in UHI mitigation.
Resumo:
Recent studies found that soil-atmosphere coupling features, through soil moisture, have been crucial to simulate well heat waves amplitude, duration and intensity. Moreover, it was found that soil moisture depletion both in Winter and Spring anticipates strong heat waves during the Summer. Irrigation in geophysical studies can be intended as an anthropogenic forcing to the soil-moisture, besides changes in land proprieties. In this study, the irrigation was add to a LAM hydrostatic model (BOLAM) and coupled with the soil. The response of the model to irrigation perturbation is analyzed during a dry Summer season. To identify a dry Summer, with overall positive temperature anomalies, an extensive climatological characterization of 2015 was done. The method included a statistical validation on the reference period distribution used to calculate the anomalies. Drought conditions were observed during Summer 2015 and previous seasons, both on the analyzed region and the Alps. Moreover July was characterized as an extreme event for the referred distribution. The numerical simulation consisted on the summer season of 2015 and two run: a control run (CTR), with the soil coupling and a perturbed run (IPR). The perturbation consists on a mask of land use created from the Cropland FAO dataset, where an irrigation water flux of 3 mm/day was applied from 6 A.M. to 9 A.M. every day. The results show that differences between CTR and IPR has a strong daily cycle. The main modifications are on the air masses proprieties, not on to the dynamics. However, changes in the circulation at the boundaries of the Po Valley are observed, and a diagnostic spatial correlation of variable differences shows that soil moisture perturbation explains well the variation observed in the 2 meters height temperature and in the latent heat fluxes.On the other hand, does not explain the spatial shift up and downslope observed during different periods of the day. Given the results, irrigation process affects the atmospheric proprieties on a larger scale than the irrigation, therefore it is important in daily forecast, particularly during hot and dry periods.