4 resultados para Probabilistic Reasoning
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
A regional envelope curve (REC) of flood flows summarises the current bound on our experience of extreme floods in a region. RECs are available for most regions of the world. Recent scientific papers introduced a probabilistic interpretation of these curves and formulated an empirical estimator of the recurrence interval T associated with a REC, which, in principle, enables us to use RECs for design purposes in ungauged basins. The main aim of this work is twofold. First, it extends the REC concept to extreme rainstorm events by introducing the Depth-Duration Envelope Curves (DDEC), which are defined as the regional upper bound on all the record rainfall depths at present for various rainfall duration. Second, it adapts the probabilistic interpretation proposed for RECs to DDECs and it assesses the suitability of these curves for estimating the T-year rainfall event associated with a given duration and large T values. Probabilistic DDECs are complementary to regional frequency analysis of rainstorms and their utilization in combination with a suitable rainfall-runoff model can provide useful indications on the magnitude of extreme floods for gauged and ungauged basins. The study focuses on two different national datasets, the peak over threshold (POT) series of rainfall depths with duration 30 min., 1, 3, 9 and 24 hrs. obtained for 700 Austrian raingauges and the Annual Maximum Series (AMS) of rainfall depths with duration spanning from 5 min. to 24 hrs. collected at 220 raingauges located in northern-central Italy. The estimation of the recurrence interval of DDEC requires the quantification of the equivalent number of independent data which, in turn, is a function of the cross-correlation among sequences. While the quantification and modelling of intersite dependence is a straightforward task for AMS series, it may be cumbersome for POT series. This paper proposes a possible approach to address this problem.
Resumo:
This work aims to evaluate the reliability of these levee systems, calculating the probability of “failure” of determined levee stretches under different loads, using probabilistic methods that take into account the fragility curves obtained through the Monte Carlo Method. For this study overtopping and piping are considered as failure mechanisms (since these are the most frequent) and the major levee system of the Po River with a primary focus on the section between Piacenza and Cremona, in the lower-middle area of the Padana Plain, is analysed. The novelty of this approach is to check the reliability of individual embankment stretches, not just a single section, while taking into account the variability of the levee system geometry from one stretch to another. This work takes also into consideration, for each levee stretch analysed, a probability distribution of the load variables involved in the definition of the fragility curves, where it is influenced by the differences in the topography and morphology of the riverbed along the sectional depth analysed as it pertains to the levee system in its entirety. A type of classification is proposed, for both failure mechanisms, to give an indication of the reliability of the levee system based of the information obtained by the fragility curve analysis. To accomplish this work, an hydraulic model has been developed where a 500-year flood is modelled to determinate the residual hazard value of failure for each stretch of levee near the corresponding water depth, then comparing the results with the obtained classifications. This work has the additional the aim of acting as an interface between the world of Applied Geology and Environmental Hydraulic Engineering where a strong collaboration is needed between the two professions to resolve and improve the estimation of hydraulic risk.
Resumo:
Il cervello umano è composto da una rete complessa, formata da fasci di assoni, che connettono le diverse aree cerebrali. Il fascio arcuato collega l’area imputata alla com- prensione del linguaggio con quella dedicata alla sua produzione. Il fascio arcuato è presente in entrambi gli emisferi cerebrali, anche se spesso è utilizzato prevalente- mente il sinistro. In questa tesi sono state valutate, in un campione di soggetti sani, le differenze tra fascio arcuato destro e sinistro, utilizzando la trattografia, metodica avanzata e non invasiva che permette la ricostruzione della traiettoria delle fibre con immagini RM (Risonanza Magnetica) pesate in diffusione. A questo scopo ho utilizzato un algoritmo probabilistico, che permette la stima di probabilità di connessione della fibra in oggetto con le diverse aree cerebrali, anche nelle sedi di incrocio con fibre di fasci diversi. Grazie all’implementazione di questo metodo, è stato possibile ottenere una ricostruzione accurata del fascio arcuato, an- che nell’emisfero destro dove è spesso critica, tanto da non essere possibile con altri algoritmi trattografici. Parametrizzando poi la geometria del tratto ho diviso il fascio arcuato in venti seg- menti e ho confrontato i parametri delle misure di diffusione, valutate nell’emisfero destro e sinistro. Da queste analisi emerge un’ampia variabilità nella geometria dell’arcuato, sia tra diversi soggetti che diversi emisferi. Nell’emisfero destro l’arcuato incrocia maggiormente fibre appartenenti ad altri fasci. Nell’emisfero sinistro le fibre dell’arcuato sono più compatte e si misura anche una maggiore connettività con altre aree del cervello coinvolte nelle funzioni linguistiche. Nella seconda fase dello studio ho applicato la stessa metodica in due pazienti con lesioni cerebrali, con l’obiettivo di testare il danno del fascio arcuato ipsilaterale alla lesione e stimare se nell’emisfero controlaterale si innescassero meccanismi di plastic- ità strutturale. Questa metodica può essere implementata, in un gruppo di pazienti omogenei, per identificare marcatori RM diagnostici nella fase di pianificazione pre- chirurgica e marcatori RM prognostici di recupero funzionale del linguaggio.
Resumo:
In questo studio, un multi-model ensemble è stato implementato e verificato, seguendo una delle priorità di ricerca del Subseasonal to Seasonal Prediction Project (S2S). Una regressione lineare è stata applicata ad un insieme di previsioni di ensemble su date passate, prodotte dai centri di previsione mensile del CNR-ISAC e ECMWF-IFS. Ognuna di queste contiene un membro di controllo e quattro elementi perturbati. Le variabili scelte per l'analisi sono l'altezza geopotenziale a 500 hPa, la temperatura a 850 hPa e la temperatura a 2 metri, la griglia spaziale ha risoluzione 1 ◦ × 1 ◦ lat-lon e sono stati utilizzati gli inverni dal 1990 al 2010. Le rianalisi di ERA-Interim sono utilizzate sia per realizzare la regressione, sia nella validazione dei risultati, mediante stimatori nonprobabilistici come lo scarto quadratico medio (RMSE) e la correlazione delle anomalie. Successivamente, tecniche di Model Output Statistics (MOS) e Direct Model Output (DMO) sono applicate al multi-model ensemble per ottenere previsioni probabilistiche per la media settimanale delle anomalie di temperatura a 2 metri. I metodi MOS utilizzati sono la regressione logistica e la regressione Gaussiana non-omogenea, mentre quelli DMO sono il democratic voting e il Tukey plotting position. Queste tecniche sono applicate anche ai singoli modelli in modo da effettuare confronti basati su stimatori probabilistici, come il ranked probability skill score, il discrete ranked probability skill score e il reliability diagram. Entrambe le tipologie di stimatori mostrano come il multi-model abbia migliori performance rispetto ai singoli modelli. Inoltre, i valori più alti di stimatori probabilistici sono ottenuti usando una regressione logistica sulla sola media di ensemble. Applicando la regressione a dataset di dimensione ridotta, abbiamo realizzato una curva di apprendimento che mostra come un aumento del numero di date nella fase di addestramento non produrrebbe ulteriori miglioramenti.