7 resultados para Printed electronics

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis work has been carried out at Clarkson University in Potsdam NY, USA and involved the design of a low elongation wing, consisting of parts made by polylactide (PLA) using the fused deposition model (FDM) technology of Rapid Prototyping, then assembled together in a thin aluminum spar. The aim of the research is to evaluate the feasibility of collecting electrical energy by converting mechanical energy from the vibration of the wing flutter. With this aim piezoelectric stripes were glued in the inner part of the wing, as well as on the aluminum spar, as monomorphic configuration. During the phases of the project, particular attention was given to the geometry and the materials used, in order to trigger the flutter for low flow velocity. The CAD software SolidWorks® was used for the design of the wing and then the drawings were sent to the Clarkson machine shop in order to to produce the parts required by the wing assembly. FEM simulations were performed, using software MSC NASTRAN/PATRAN®, to evaluate the stiffness of the whole wing as well as the natural vibration modes of the structure. These data, in a first approximation, were used to predict the flutter speed. Finally, experimental tests in the Clarkson wind tunnel facility were carried out in order to validate the results obtained from FEM analysis. The power collected by the piezoelectrics under flutter condition was addressed by tuning the resistors downstream the electronic circuit of the piezoelectrics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic semiconductor technology has attracted considerable research interest in view of its great promise for large area, lightweight, and flexible electronics applications. Owing to their advantages in processing and unique physical properties, organic semiconductors can bring exciting new opportunities for broad-impact applications requiring large area coverage, mechanical flexibility, low-temperature processing, and low cost. In order to achieve highly flexible device architecture it is crucial to understand on a microscopic scale how mechanical deformation affects the electrical performance of organic thin film devices. Towards this aim, I established in this thesis the experimental technique of Kelvin Probe Force Microscopy (KPFM) as a tool to investigate the morphology and the surface potential of organic semiconducting thin films under mechanical strain. KPFM has been employed to investigate the strain response of two different Organic Thin Film Transistor with active layer made by 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-Pentacene), and Poly(3-hexylthiophene-2,5-diyl) (P3HT). The results show that this technique allows to investigate on a microscopic scale failure of flexible TFT with this kind of materials during bending. I find that the abrupt reduction of TIPS-pentacene device performance at critical bending radii is related to the formation of nano-cracks in the microcrystal morphology, easily identified due to the abrupt variation in surface potential caused by local increase in resistance. Numerical simulation of the bending mechanics of the transistor structure further identifies the mechanical strain exerted on the TIPS-pentacene micro-crystals as the fundamental origin of fracture. Instead for P3HT based transistors no significant reduction in electrical performance is observed during bending. This finding is attributed to the amorphous nature of the polymer giving rise to an elastic response without the occurrence of crack formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conductive polymers (CPS) are a class of carbon-based materials, capable of conducting electric current, characterized by metallic properties in combination with the intrinsic properties of conventional polymers. The structural model of the CP consists of a system of double π-conjugated on the backbone (polyene structure) which can easily undergo reversible doping reaching a wide range of conductivity. Thanks to their versatility and peculiar properties (mechanical flexibility, biocompatibility, transparency, ease of chemical functionalization, high thermal stability), CPS have revolutionized the science of materials giving rise to Organic Bioelectronics, the discipline resulting from the convergence between biology and electronics. The Poly (3,4-ethylenedioxythiophene) : poly (styrenesulfonate) (PEDOT: PSS), complex polyelectrolyte, in the form of a thin film, currently represents the reference standard in applications concerning Bioelectronics. In this project, two types of electrochemical sensors ink-jet printed on a flexible polymeric substrate, the polyethylene terephthalate, have been developed and characterized. The Drop on Demand (DOD) inkjet technology has allowed to control the positioning of fluid volumes of the order of picoliters with an accuracy of ± 25μm. This resulted in the creation of amperometric sensors and organic electrochemical transistors (OECT) all-PEDOT: PSS with high reproducibility. The sensors have been used for the determination of Ascorbic Acid (AA) which is currently considered an important benchmark in the field of sensors. In Cyclic Voltammetry, the amperometric sensor has detected AA at potentials less than 0.2 V vs. SCE thanks to the electrocatalytic properties of the PEDOT: PSS. On the other hand, the OECT detected AA concentrations equal to 10 nanomolar in Chronoamperometry. Furthermore, a promising new generation of all-printed OECTS, consisting of silver metal contacts, has been created. Preliminary results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this novel experimental study is to investigate the behaviour of a 2m x 2m model of a masonry groin vault, which is built by the assembly of blocks made of a 3D-printed plastic skin filled with mortar. The choice of the groin vault is due to the large presence of this vulnerable roofing system in the historical heritage. Experimental tests on the shaking table are carried out to explore the vault response on two support boundary conditions, involving four lateral confinement modes. The data processing of markers displacement has allowed to examine the collapse mechanisms of the vault, based on the arches deformed shapes. There then follows a numerical evaluation, to provide the orders of magnitude of the displacements associated to the previous mechanisms. Given that these displacements are related to the arches shortening and elongation, the last objective is the definition of a critical elongation between two diagonal bricks and consequently of a diagonal portion. This study aims to continue the previous work and to take another step forward in the research of ground motion effects on masonry structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to demonstrate that 3D-printing technologies can be considered significantly attractive in the production of microwave devices and in the antenna design, with the intention of making them lightweight, cheaper, and easily integrable for the production of wireless, battery-free, and wearable devices for vital signals monitoring. In this work, a new 3D-printable, low-cost resin material, the Flexible80A, is proposed as RF substrate in the implementation of a rectifying antenna (rectenna) operating at 2.45 GHz for wireless power transfer. A careful and accurate electromagnetic characterization of the abovementioned material, revealing it to be a very lossy substrate, has paved the way for the investigation of innovative transmission line and antenna layouts, as well as etching techniques, possible thanks to the design freedom enabled by 3D-printing technologies with the aim of improving the wave propagation performance within lossy materials. This analysis is crucial in the design process of a patch antenna, meant to be successively connected to the rectifier. In fact, many different patch antenna layouts are explored varying the antenna dimensions, the substrate etchings shape and position, the feeding line technology, and the operating frequency. Before dealing with the rectification stage of the rectenna design, the hot and long-discussed topic of the equivalent receiving antenna circuit representation is addressed, providing an overview of the interpretation of different authors about the issue, and the position that has been adopted in this thesis. Furthermore, two rectenna designs are proposed and simulated with the aim of minimizing the dielectric losses. Finally, a prototype of a rectenna with the antenna conjugate matched to the rectifier, operating at 2.45 GHz, has been fabricated with adhesive copper on a substrate sample of Flexible80A and measured, in order to validate the simulated results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main research topic of the present master thesis consisted in the modification and electrochemical testing of inkjet printed graphene electrodes with a thin polymeric hydrogel layer made of cross-linked poly(N-isopropylacrylamide) (PNIPAAM) acting as a functional layer to fabricate selective sensors. The first experimental activities dealt with the synthesis of the polymeric hydrogel and the modification of the active surface of graphene sensors through photopolymerization. Simultaneous inkjet printing and photopolymerization of the hydrogel precursor inks onto graphene demonstrated to be the most effective and reproducible technique for the modification of the electrode with PNIPAAM. The electrochemical performance of the modified electrodes was tested through cyclic voltammetry. Voltammograms with standard redox couples with either positive, neutral or negative charges, suggested an electrostatic filtering effect by the hydrogel blocking negatively charged redox species in near neutral pH electrolyte solutions from reaching the electrode surface. PNIPAAM is a known thermo-responsive polymer, but the variation of temperature did not influence the filtering properties of the hydrogels for the redox couples studied. However, a variation of the filter capacity of the material was observed at pH 2 in which the PNIPAAM hydrogel, most likely in protonated form, became impermeable to positively charged redox species and permeable to negatively charged species. Finally, the filtering capacity of the electrodes modified with PNIPAAM was evaluated for the electrochemical determination of analytes in presence of negatively charge potential interferents, such as antioxidants like ascorbic acid. The outcome of the final experiments suggested the possibility to use the inkjet-printed PNIPAAM thin layer for electroanalytical applications as an electrostatic filter against interferents of opposite charges, typically present in complex matrices, such as food and beverages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major issues for power converters that are connected to the electric grid are the measurement of three phase Conduced Emissions (CE), which are regulated by international and regional standards. CE are composed of two components which are Common Mode (CM) noise and Differential Mode (DM) noise. To achieve compliance with these regulations the Equipment Under Test (EUT) includes filtering and other electromagnetic emission control strategies. The separation of differential mode and common mode noise in Electromagnetic Interference (EMI) analysis is a well-known procedure which is useful especially for the optimization of the EMI filter, to improve the CM or DM attenuation depending on which component of the conducted emissions is predominant, and for the analysis and the understanding of interference phenomena of switched mode power converters. However, separating both components is rarely done during measurements. Therefore, in this thesis an active device for the separation of the CM and DM EMI noise in three phase power electronic systems has been designed and experimentally analysed.