3 resultados para Pressurized water reactors

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Questo elaborato ha lo scopo di esporre quelli che sono i vantaggi derivanti dall' utilizzo degli acciai inossidabili, specificando il tipo di componente e le ragioni della scelta, nei sistemi per la produzione di energia: dalle turbine, agli impianti nucleari, fino agli impianti che sfruttano le energie alternative (solare, eolica, geotermica, biogas). Inizialmente viene fornito un quadro generale sui differenti tipi di acciai inox (martensitici, ferritici, austenitici e duplex, con le relative proprietà, sottolineandone vantaggi e svantaggi), descrivendone anche i sistemi di designazione, con particolare attenzione alla norma AISI (American Iron and Steel Institute). Una volta messe in risalto queste caratteristiche, vengono esaminati e descritti diversi sistemi di produzione di energia in cui gli acciai inox trovano applicazione: si parte dalle turbine (idraulica, a vapore e a gas), spiegando i benefici nell'utilizzo di particolari categorie di acciai inox nella realizzazione di alcuni dei componenti per questi impianti. Vengono quindi esaminati gli impianti nucleari, partendo da quelli che utilizzano come moderatore e fluido refrigerante acqua naturale, ("PWR", Pressurized Water Reactor) e ("BWR", Boiling Water Reactor), fino a quelli che utilizzano invece acqua pesante ("CANDU", Canadian Deuterium Uranium Reactor), nonchè i reattori veloci ("FBR", Fast Breeding Reactor). Infine, vengono esaminate le applicazioni degli acciai inox, nei sistemi per la produzione di energia che, sfruttano fonti alternative (elencate in precedenza).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La crescente attenzione verso un utilizzo attento, sostenibile ed economicamente efficiente della risorsa idrica rende di primaria importanza il tema delle perdite idriche e della gestione efficiente dei sistemi idrici. La richiesta di controlli dell’uso dell’acqua è stata avanzata a livello mondiale. Il problema delle perdite idriche nei Paesi industrializzati è stato così affrontato con specifiche normative e procedure di best practice gestionale per avanzare una valutazione delle perdite idriche e una limitazione degli sprechi e degli usi impropri. In quest’ambito, la pressione gioca un ruolo fondamentale nella regolazione delle perdite reali. La regolazione delle pressioni nelle diverse ore del giorno consente, infatti, di poter agire su queste ultime perdite, che aumentano all’aumentare della pressione secondo una cosiddetta legge di potenza. La motivazione della presente tesi è originata dalla necessità di quantificare il livello di perdita idrica in un sistema acquedottistico in relazione alla pressione all’interno del sistema stesso. Per avere una stima realistica che vada al di là della legge della foronomia, si vuole valutare l’influenza della deformabilità della condotta in pressione fessurata sull’entità delle perdite idriche, con particolare attenzione alle fessurazioni di tipo longitudinale. Tale studio è condotto tramite l’introduzione di un semplice modello di trave alla Winkler grazie al quale, attraverso un’analisi elastica, si descrive il comportamento di una generica condotta fessurata longitudinalmente e si valuta la quantità d’acqua perduta. I risultati ottenuti in condizioni specifiche della condotta (tipo di materiale, caratteristiche geometriche dei tubi e delle fessure, etc.) e mediante l’inserimento di opportuni parametri nel modello, calibrati sui risultati forniti da una raffinata modellazione tridimensionale agli elementi finiti delle medesime condotte, verranno poi confrontati con i risultati di alcune campagne sperimentali. Gli obiettivi del presente lavoro sono, quindi, la descrizione e la valutazione del modello di trave introdotto, per stabilire se esso, nonostante la sua semplicità, sia effettivamente in grado di riprodurre, in maniera realistica, la situazione che si potrebbe verificare nel caso di tubo fessurato longitudinalmente e di fornire risultati attendibili per lo studio delle perdite idriche. Nella prima parte verrà approfondito il problema della perdite idriche. Nella seconda parte si illustrerà il semplice modello di trave su suolo elastico adottato per l’analisi delle condotte in pressione fessurate, dopo alcuni cenni teorici ai quali si è fatto riferimento per la realizzazione del modello stesso. Successivamente, nella terza parte, si procederà alla calibrazione del modello, tramite il confronto con i risultati forniti da un’analisi tridimensionale agli elementi finiti. Infine nella quarta parte verrà ricavata la relazione flusso-pressione con particolare attenzione all’esponente di perdita, il cui valore risulterà superiore a quello predetto dalla teoria della foronomia, e verrà verificata l’effettiva validità del modello tramite un confronto con i risultati sperimentali di cui è stata fatta menzione in precedenza.