3 resultados para Precipitation of metals

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays we live in densely populated regions and this leads to many environmental issues. Among all pollutants that human activities originate, metals are relevant because they can be potentially toxic for most of living beings. We studied the fate of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in a vineyard environment analysing samples of plant, wine and soil. Sites were chosen considering the type of wine produced, the type of cultivation (both organic and conventional agriculture) and the geographic location. We took vineyards that cultivate the same grape variety, the Trebbiano). We investigated 5 vineyards located in the Ravenna district (Italy): two on the Lamone Valley slopes, one in the area of river-bank deposits near Ravenna city, then a farm near Lugo and one near Bagnacavallo in interfluve regions. We carried out a very detailed characterization of soils in the sites, including the analysis of: pH, electric conductivity, texture, total carbonate and extimated content of dolomite, active carbonate, iron from ammonium oxalate, Iron Deficiency Chlorosis Index (IDCI), total nitrogen and organic carbon, available phosphorous, available potassium and Cation Exchange Capacity (CEC). Then we made the analysis of the bulk chemical composition and a DTPA extraction to determine the available fraction of elements in soils. All the sites have proper ground to cultivate, with already a good amount of nutrients, such as not needing strong fertilisations, but a vineyard on hills suffers from iron deficiency chlorosis due to the high level of active carbonate. We found some soils with much silica and little calcium oxide that confirm the marly sandstone substratum, while other soils have more calcium oxide and more aluminium oxide that confirm the argillaceous marlstone substratum. We found some critical situations, such as high concentrations of Chromium, especially in the farm near Lugo, and we noticed differences between organic vineyards and conventional ones: the conventional ones have a higher enrichment in soils of some metals (Copper and Zinc). Each metal accumulates differently in every single part of grapevines. We found differences between hill plants and lowland ones: behaviors of plants in metal accumulations seems to have patterns. Metals are more abundant in barks, then in leaves or sometimes in roots. Plants seem trying to remove excesses of metal storing them in bark. Two wines have excess of acetic acid and one conventional farm produces wine with content of Zinc over the Italian law limit. We already found evidence of high values relating them with uncontaminated environments, but more investigations are suggested to link those values to their anthropogenic supplies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microalgae have been studied because of their great potential as a source of new compounds with important value for biotechnology and to understand their strategies of survival in extreme environments. The microalgae Coccomyxa sp., studied in this thesis, is a poly-extremophile witch was isolated from the acid mine drainage of S. Domingos mine. This environment is characterized by low pH (<3) and high concentration of metals, such as copper and iron. The main purpose of the present work was to evaluate the potential bioactivity in an ex-vivo animal model (Fundulus heteroclitus), and expression on selected genes, of cellular extracts obtained from cultures of Coccomyxa sp. at pH 7 without or with exposure to copper (0.6mM Cu²+). The extracts of Coccomyxa sp. cultured at pH 7 exposed to copper show a great potential to be used as epithelial NKCC inhibitors, revealing their potential use as diuretics, but did not show significant effects on gene expression. Coccomyxa sp. could be a good source of cellular extracts with a great potential to be used in pharmaceutical and biotechnology industries.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deterioration phenomena occurring on outdoor cultural heritage have been the subject of several studies, but relatively few works investigated the specific role of Particulate Matter (PM) in the corrosion of metals. This topic is really complex and, besides field exposures, accelerated ageing tests are also necessary to isolate and understand deterioration mechanisms due to PM. For this reason, the development of a methodology that allows to reproduce and analyze the effect of PM on alloys through accelerated ageing in climatic chamber has been started. On quaternary bronze specimens, single salts and a mix of them were deposited via two deposition methods: dry (directly depositing the salt on the surface) and wet (dropping a salt solution and drying it), simulating the initial chemical activation of the salts by RH% variations or by raindrops, respectively. Then, to better mimic the composition of real PM, a mixture containing a soluble salts, a mineral, a black carbon and an organic fraction was formulated and spread on the samples. The samples were placed in a climatic chamber and exposed to cyclic variations of T and RH for three weeks. The ageing cycles were set according to predictions on salt deliquescence/recrystallization through E-AIM model and to the evaluation of regional climatic data. The surface evolution was followed by SEM-EDX, Raman, AT-IR and UV-Vis Spectrophotometry. At the end of the test, mass losses were determined and corroded metals removed by pickling were analyzed by AAS. On the basis of the obtained results, the tested procedures seem to be promising in accelerating and mimicking realistic corrosion phenomena, as under the selected conditions, corrosion products typically found at different exposure time (from days to years) on outdoor bronzes were able to progressively form and evolve. Moreover, the two deposition modes simulating different condition of chemical activation of PM deposits allow to obtain complementary information.