7 resultados para Practice-based Approach
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L'obiettivo su cui è stata basata questa Tesi di Laurea è stato quello di integrare la tecnologia delle Wireless Sensor Networks (WSN) al contesto dell'Internet delle cose (IoT). Per poter raggiungere questo obiettivo, il primo passo è stato quello di approfondire il concetto dell'Internet delle cose, in modo tale da comprendere se effettivamente fosse stato possibile applicarlo anche alle WSNs. Quindi è stata analizzata l'architettura delle WSNs e successivamente è stata fatta una ricerca per capire quali fossero stati i vari tipi di sistemi operativi e protocolli di comunicazione supportati da queste reti. Infine sono state studiate alcune IoT software platforms. Il secondo passo è stato quindi di implementare uno stack software che abilitasse la comunicazione tra WSNs e una IoT platform. Come protocollo applicativo da utilizzare per la comunicazione con le WSNs è stato usato CoAP. Lo sviluppo di questo stack ha consentito di estendere la piattaforma SensibleThings e il linguaggio di programmazione utilizzato è stato Java. Come terzo passo è stata effettuata una ricerca per comprendere a quale scenario di applicazione reale, lo stack software progettato potesse essere applicato. Successivamente, al fine di testare il corretto funzionamento dello stack CoAP, è stata sviluppata una proof of concept application che simulasse un sistema per la rilevazione di incendi. Questo scenario era caratterizzato da due WSNs che inviavano la temperatura rilevata da sensori termici ad un terzo nodo che fungeva da control center, il cui compito era quello di capire se i valori ricevuti erano al di sopra di una certa soglia e quindi attivare un allarme. Infine, l'ultimo passo di questo lavoro di tesi è stato quello di valutare le performance del sistema sviluppato. I parametri usati per effettuare queste valutazioni sono stati: tempi di durata delle richieste CoAP, overhead introdotto dallo stack CoAP alla piattaforma Sensible Things e la scalabilità di un particolare componente dello stack. I risultati di questi test hanno mostrato che la soluzione sviluppata in questa tesi ha introdotto un overheadmolto limitato alla piattaforma preesistente e inoltre che non tutte le richieste hanno la stessa durata, in quanto essa dipende dal tipo della richiesta inviata verso una WSN. Tuttavia, le performance del sistema potrebbero essere ulteriormente migliorate, ad esempio sviluppando un algoritmo che consenta la gestione concorrente di richieste CoAP multiple inviate da uno stesso nodo. Inoltre, poichè in questo lavoro di tesi non è stato considerato il problema della sicurezza, una possibile estensione al lavoro svolto potrebbe essere quello di implementare delle politiche per una comunicazione sicura tra Sensible Things e le WSNs.
Resumo:
Questa tesi si occupa dell’estensione di un framework software finalizzato all'individuazione e al tracciamento di persone in una scena ripresa da telecamera stereoscopica. In primo luogo è rimossa la necessità di una calibrazione manuale offline del sistema sfruttando algoritmi che consentono di individuare, a partire da un fotogramma acquisito dalla camera, il piano su cui i soggetti tracciati si muovono. Inoltre, è introdotto un modulo software basato su deep learning con lo scopo di migliorare la precisione del tracciamento. Questo componente, che è in grado di individuare le teste presenti in un fotogramma, consente ridurre i dati analizzati al solo intorno della posizione effettiva di una persona, escludendo oggetti che l’algoritmo di tracciamento sarebbe portato a individuare come persone.
Resumo:
The job of a historian is to understand what happened in the past, resorting in many cases to written documents as a firsthand source of information. Text, however, does not amount to the only source of knowledge. Pictorial representations, in fact, have also accompanied the main events of the historical timeline. In particular, the opportunity of visually representing circumstances has bloomed since the invention of photography, with the possibility of capturing in real-time the occurrence of a specific events. Thanks to the widespread use of digital technologies (e.g. smartphones and digital cameras), networking capabilities and consequent availability of multimedia content, the academic and industrial research communities have developed artificial intelligence (AI) paradigms with the aim of inferring, transferring and creating new layers of information from images, videos, etc. Now, while AI communities are devoting much of their attention to analyze digital images, from an historical research standpoint more interesting results may be obtained analyzing analog images representing the pre-digital era. Within the aforementioned scenario, the aim of this work is to analyze a collection of analog documentary photographs, building upon state-of-the-art deep learning techniques. In particular, the analysis carried out in this thesis aims at producing two following results: (a) produce the date of an image, and, (b) recognizing its background socio-cultural context,as defined by a group of historical-sociological researchers. Given these premises, the contribution of this work amounts to: (i) the introduction of an historical dataset including images of “Family Album” among all the twentieth century, (ii) the introduction of a new classification task regarding the identification of the socio-cultural context of an image, (iii) the exploitation of different deep learning architectures to perform the image dating and the image socio-cultural context classification.
Resumo:
Vision systems are powerful tools playing an increasingly important role in modern industry, to detect errors and maintain product standards. With the enlarged availability of affordable industrial cameras, computer vision algorithms have been increasingly applied in industrial manufacturing processes monitoring. Until a few years ago, industrial computer vision applications relied only on ad-hoc algorithms designed for the specific object and acquisition setup being monitored, with a strong focus on co-designing the acquisition and processing pipeline. Deep learning has overcome these limits providing greater flexibility and faster re-configuration. In this work, the process to be inspected consists in vials’ pack formation entering a freeze-dryer, which is a common scenario in pharmaceutical active ingredient packaging lines. To ensure that the machine produces proper packs, a vision system is installed at the entrance of the freeze-dryer to detect eventual anomalies with execution times compatible with the production specifications. Other constraints come from sterility and safety standards required in pharmaceutical manufacturing. This work presents an overview about the production line, with particular focus on the vision system designed, and about all trials conducted to obtain the final performance. Transfer learning, alleviating the requirement for a large number of training data, combined with data augmentation methods, consisting in the generation of synthetic images, were used to effectively increase the performances while reducing the cost of data acquisition and annotation. The proposed vision algorithm is composed by two main subtasks, designed respectively to vials counting and discrepancy detection. The first one was trained on more than 23k vials (about 300 images) and tested on 5k more (about 75 images), whereas 60 training images and 52 testing images were used for the second one.
Resumo:
Ogni anno in Italia, migliaia di protesi convenzionali vengono impiantate con successo in pazienti affetti da artrosi alla spalla, tuttavia è stato dimostrato che questa tipologia di protesi non funziona in quei pazienti che soffrono contemporaneamente anche di grandi lesioni alla cuffia dei rotatori, ricorrendo successivamente a un impianto di protesi di spalla inversa. La scelta sul miglior tipo di protesi da parte del chirurgo è quindi fondamentale e necessaria per evitare futuri stress e operazioni al paziente. Nel corso degli anni si è fatto affidamento a protocolli che non considerano in maniera specifica la componente tissutale ossea. In questa tesi si cerca di dimostrare che attraverso l’utilizzo delle immagini mediche è possibile ricavare dati e grafici specifici sulla componente ossea del paziente per ottimizzare poi la scelta della protesi da parte del chirurgo e la fase pre/intra operatoria.
Resumo:
Every year, thousand of surgical treatments are performed in order to fix up or completely substitute, where possible, organs or tissues affected by degenerative diseases. Patients with these kind of illnesses stay long times waiting for a donor that could replace, in a short time, the damaged organ or the tissue. The lack of biological alternates, related to conventional surgical treatments as autografts, allografts, e xenografts, led the researchers belonging to different areas to collaborate to find out innovative solutions. This research brought to a new discipline able to merge molecular biology, biomaterial, engineering, biomechanics and, recently, design and architecture knowledges. This discipline is named Tissue Engineering (TE) and it represents a step forward towards the substitutive or regenerative medicine. One of the major challenge of the TE is to design and develop, using a biomimetic approach, an artificial 3D anatomy scaffold, suitable for cells adhesion that are able to proliferate and differentiate themselves as consequence of the biological and biophysical stimulus offered by the specific tissue to be replaced. Nowadays, powerful instruments allow to perform analysis day by day more accurateand defined on patients that need more precise diagnosis and treatments.Starting from patient specific information provided by TC (Computed Tomography) microCT and MRI(Magnetic Resonance Imaging), an image-based approach can be performed in order to reconstruct the site to be replaced. With the aid of the recent Additive Manufacturing techniques that allow to print tridimensional objects with sub millimetric precision, it is now possible to practice an almost complete control of the parametrical characteristics of the scaffold: this is the way to achieve a correct cellular regeneration. In this work, we focalize the attention on a branch of TE known as Bone TE, whose the bone is main subject. Bone TE combines osteoconductive and morphological aspects of the scaffold, whose main properties are pore diameter, structure porosity and interconnectivity. The realization of the ideal values of these parameters represents the main goal of this work: here we'll a create simple and interactive biomimetic design process based on 3D CAD modeling and generative algorithmsthat provide a way to control the main properties and to create a structure morphologically similar to the cancellous bone. Two different typologies of scaffold will be compared: the first is based on Triply Periodic MinimalSurface (T.P.M.S.) whose basic crystalline geometries are nowadays used for Bone TE scaffolding; the second is based on using Voronoi's diagrams and they are more often used in the design of decorations and jewellery for their capacity to decompose and tasselate a volumetric space using an heterogeneous spatial distribution (often frequent in nature). In this work, we will show how to manipulate the main properties (pore diameter, structure porosity and interconnectivity) of the design TE oriented scaffolding using the implementation of generative algorithms: "bringing back the nature to the nature".
Resumo:
Internet traffic classification is a relevant and mature research field, anyway of growing importance and with still open technical challenges, also due to the pervasive presence of Internet-connected devices into everyday life. We claim the need for innovative traffic classification solutions capable of being lightweight, of adopting a domain-based approach, of not only concentrating on application-level protocol categorization but also classifying Internet traffic by subject. To this purpose, this paper originally proposes a classification solution that leverages domain name information extracted from IPFIX summaries, DNS logs, and DHCP leases, with the possibility to be applied to any kind of traffic. Our proposed solution is based on an extension of Word2vec unsupervised learning techniques running on a specialized Apache Spark cluster. In particular, learning techniques are leveraged to generate word-embeddings from a mixed dataset composed by domain names and natural language corpuses in a lightweight way and with general applicability. The paper also reports lessons learnt from our implementation and deployment experience that demonstrates that our solution can process 5500 IPFIX summaries per second on an Apache Spark cluster with 1 slave instance in Amazon EC2 at a cost of $ 3860 year. Reported experimental results about Precision, Recall, F-Measure, Accuracy, and Cohen's Kappa show the feasibility and effectiveness of the proposal. The experiments prove that words contained in domain names do have a relation with the kind of traffic directed towards them, therefore using specifically trained word embeddings we are able to classify them in customizable categories. We also show that training word embeddings on larger natural language corpuses leads improvements in terms of precision up to 180%.