7 resultados para Power conversion
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Plastic solar cells bear the potential for large-scale power generation based on flexible, lightweight, inexpensive materials. Since the discovery of the photo-induced electron transfer from a conjugated polymer (electron-donor) to fullerene or its derivatives molecules (electron-acceptors), followed by the introduction of the bulk heterojunction concept which means donors and acceptors blended together to realize the fotoactive layer, materials and deposition techniques have been extensively studied. In this work, electrochemical-deposition methods of polymeric conductive films were studied in order to realize bulk heterojunction solar cells. Indium Tin Oxide (ITO) glass electrodes modified with a thin layer of poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically prepared under potentiodynamic and potentiostatic conditions; then those techniques were applied for the electrochemical co-deposition of donor and acceptor on modified ITO electrode to produce the active layer (blend). For the deposition of the electron-donor polymer the electropolymerization of many functionalized thiophene monomers was investigated while, as regards acceptors, fullerene was used first, then the study was focused on its derivative PCBM ([6,6]-phenyl-C61-butyric acid methyl ester). The polymeric films obtained (PEDOT and blend) were electrochemically and spectrophotometrically characterized and the film thicknesses were evaluated by atomic force microscopy (AFM). Finally, to check the performances and the efficiency of the realized solar cells, tests were carried out under standard conditions. Nowadays bulk heterojunction solar cells are still poorly efficient to be competitively commercialized. A challenge will be to find new materials and better deposition techniques in order to obtain better performances. The research has led to several breakthroughs in efficiency, with a power conversion efficiency approaching 5 %. The efficiency of the solar cells produced in this work is even lower (lower than 1 %). Despite all, solar cells of this type are interesting and may represent a cheaper and easier alternative to traditional silicon-based solar panels.
Resumo:
Due to the low cost, lightness and flexibility, Polymer Solar Cell (PSC) technology is considered one of the most promising energy technologies. In the past decades, PSCs using fullerenes or fullerene derivatives as the electron acceptors have made great progress with best power conversion efficiency (PCE) reaching 11%. However, fullerene type electron acceptors have several drawbacks such as complicated synthesis, a low light absorption coefficient and poor tuning in energy levels, which prevent the further development of fullerene-based PSCs. Hence the need to have a new class of electron acceptors as an alternative to conventional fullerene compounds. Non-fullerene acceptors (NFAs) have developed rapidly in the last years and the maximum PCEs have exceeded 14% for single-junction cells and 17% for double-junction tandem cells. By combining an electron-donating backbone, generally with several fused rings with electron-withdrawing units, we can simply construct NFA of the acceptor–donor–acceptor type (A–D–A). Versatile molecular structures have been developed using methods such as acceptor motif engineering and donor motif engineering. However, there are only a few electron-donating backbones that have been proved to be successful. Therefore, it is still necessary to develop promising building blocks to further enrich the structural diversity. An indacenodithiophene (IDT) unit with just five fused rings has a sufficiently rigid coplanar structure, which has been regarded as one of the promising electron-rich units to design high-performance A–D–A NFAs. In this work, performed at the King Abdullah University of Science and Technology in Saudi Arabia, a new nine-cyclic building block (TBIDT) with a two benzothiophene unit was synthesized and used for designing new non-fullerene electron acceptors.
Resumo:
The quality of human life depends to a large degree on the availability of energy. In recent years, photovoltaic technology has been growing extraordinarily as a suitable source of energy, as a consequence of the increasing concern over the impact of fossil fuels on climate change. Developing affordable and highly efficiently photovoltaic technologies is the ultimate goal in this direction. Dye-sensitized solar cells (DSSCs) offer an efficient and easily implementing technology for future energy supply. Compared to conventional silicon solar cells, they provide comparable power conversion efficiency at low material and manufacturing costs. In addition, DSSCs are able to harvest low-intensity light in diffuse illumination conditions and then represent one of the most promising alternatives to the traditional photovoltaic technology, even more when trying to move towards flexible and transparent portable devices. Among these, considering the increasing demand of modern electronics for small, portable and wearable integrated optoelectronic devices, Fibre Dye-Sensitized Solar Cells (FDSSCs) have gained increasing interest as suitable energy provision systems for the development of the next-generation of smart products, namely “electronic textiles” or “e-textiles”. In this thesis, several key parameters towards the optimization of FDSSCs based on inexpensive and abundant TiO2 as photoanode and a new innovative fully organic sensitizer were studied. In particular, the effect of various FDSSCs components on the device properties pertaining to the cell architecture in terms of photoanode oxide layer thickness, electrolytic system, cell length and electrodes substrates were examined. The photovoltaic performances of the as obtained FDSSCs were fully characterized. Finally, the metal part of the devices (wire substrate) was substituted with substrates suitable for the textile industry as a fundamental step towards commercial exploitation.
Resumo:
Next to conventional solar panels that harvest direct sunlight, p-type dye-sensitized solar cells (DSSCs) have been developed, which are able to harvest diffuse sunlight. Due to unwanted charge recombination events p-type DSSCs exhibit low power conversion efficiencies (PCEs). Previous research has shown that dye-redox mediator (RM) interactions can prevent these recombination events, resulting in higher PCEs. It is unknown how the nature of dye-RM interactions affects the PCEs of pseudorotaxane-based solar cells. In this research this correlation is investigated by comparing one macrocycle, the 3-NDI, in combination with the three dyes that contains a recognition sites. 2D-DOSY-NMR experiments have been conducted to evaluate the diffusion constants (LogD) of the three couple. The research project has been stopped due to the coronavirus pandemic. The continuation of this thesis would have been to synthesize a dye on the basis of the data obtained from the diffusion tests and attempt the construction of a solar cell to then evaluate its effectiveness. During my training period I synthetized new Fe(0) cyclopentadienone compounds bearing a N-Heterocyclic Carbene ligand. The aim of the thesis was to achieve water solubility by modifications of the cyclopentadienone ligand. These new complexes have been modified using a sulfonation reaction, replacing an hydroxyl with a sulfate group, on the alkyl backbone of the cyclopentadienone ligand. All the complexes were characterized with IR, ESI-MS and NMR spectroscopy, and a new Fe(0) cyclopentadienone complex, involved as an intermediate, was obtained as a single crystal and was characterized also with X-Ray spectroscopy.
Resumo:
Una delle principali caratteristiche dei trasduttori per energy harvesting piezoelettrici è il fatto che la loro impedenza d'uscita è principalmente capacitiva. Questo consente di elaborare schemi di conversione dell'energia basati su circuiti risonanti attivati in modo sincrono con le vibrazioni, che risultano in grado di aumentare notevolmente la potenza di uscita rispetto alle comuni interfacce passive. Questa tesi si è posta come obiettivo la progettazione e implementazione di un circuito per energy harvesting da vibrazioni basato sulla tecnica Synchronized Switch Harvesting on Inductor (SSHI) che garantisse un'elevata efficienza di conversione. Dovendo gestire potenze in ingresso tipicamente di debole entità, l'architettura proposta è stata ottimizzata per minimizzare la dissipazione di potenza interna al convertitore. Il circuito proposto è stato infine validato sperimentalmente tramite allestimento di un setup di misura dedicato.
Resumo:
Il compressed sensing è un’innovativa tecnica per l’acquisizione dei dati, che mira all'estrazione del solo contenuto informativo intrinseco di un segnale. Ciò si traduce nella possibilità di acquisire informazione direttamente in forma compressa, riducendo la quantità di risorse richieste per tale operazione. In questa tesi è sviluppata un'architettura hardware per l'acquisizione di segnali analogici basata sul compressed sensing, specializzata al campionamento con consumo di potenza ridotto di segnali biomedicali a basse frequenze. Lo studio è svolto a livello di sistema mediante l'integrazione della modulazione richiesta dal compressed sensing in un convertitore analogico-digitale ad approssimazioni successive, modificandone la logica di controllo. Le prestazioni risultanti sono misurate tramite simulazioni numeriche e circuitali. Queste confermano la possibilità di ridurre la complessità hardware del sistema di acquisizione rispetto allo stato dell'arte, senza alterarne le prestazioni.
Resumo:
In recent years, energy modernization has focused on smart engineering advancements. This entails designing complicated software and hardware for variable-voltage digital substations. A digital substation consists of electrical and auxiliary devices, control and monitoring devices, computers, and control software. Intelligent measurement systems use digital instrument transformers and IEC 61850-compliant information exchange protocols in digital substations. Digital instrument transformers used for real-time high-voltage measurements should combine advanced digital, measuring, information, and communication technologies. Digital instrument transformers should be cheap, small, light, and fire- and explosion-safe. These smaller and lighter transformers allow long-distance transmission of an optical signal that gauges direct or alternating current. Cost-prohibitive optical converters are a problem. To improve the tool's accuracy, amorphous alloys are used in the magnetic circuits and compensating feedback. Large-scale voltage converters can be made cheaper by using resistive, capacitive, or hybrid voltage dividers. In known electronic voltage transformers, the voltage divider output is generally on the low-voltage side, facilitating power supply organization. Combining current and voltage transformers reduces equipment size, installation, and maintenance costs. These two gadgets cost less together than individually. To increase commercial power metering accuracy, current and voltage converters should be included into digital instrument transformers so that simultaneous analogue-to-digital samples are obtained. Multichannel ADC microcircuits with synchronous conversion start allow natural parallel sample drawing. Digital instrument transformers are created adaptable to substation operating circumstances and environmental variables, especially ambient temperature. An embedded microprocessor auto-diagnoses and auto-calibrates the proposed digital instrument transformer.