3 resultados para Potential of zero total charge
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The goal of this thesis was the study of the cement-bone interface in the tibial component of a cemented total knee prosthesis. One of the things you can see in specimens after in vivo service is that resorption of bone occurs in the interdigitated region between bone and cement. A stress shielding effect was investigated as a cause to explain bone resorption. Stress shielding occurs when bone is loaded less than physiological and therefore it starts remodeling according to the new loading conditions. µCT images were used to obtain 3D models of the bone and cement structure and a Finite Element Analysis was used to simulate different kind of loads. Resorption was also simulated by performing erosion operations in the interdigitated bone region. Finally, 4 models were simulated: bone (trabecular), bone with cement, and two models of bone with cement after progressive erosions of the bone. Compression, tension and shear test were simulated for each model in displacement-control until 2% of strain. The results show how the principal strain and Von Mises stress decrease after adding the cement on the structure and after the erosion operations. These results show that a stress shielding effect does occur and rises after resorption starts.
Resumo:
Phragmites australis (Cav.) Trin. ex Steud. is a hydrophyte particularly resistant to harsh conditions, e.g. drought, high salinity, contaminants, such as heavy metals and toxic molecules, and high nutrients concentrations. These resistances render the plant suitable for water depuration, where its particular metabolism is exploited to remove pollutants and excessive nutrients from the environment. In constructed wetlands, this principle is applied to phyto-purify wastewater with various origins, such as industrial, agricultural and household, with the aim to improve its quality to an extent which would render its reuse possible. In the framework of a pre-existing project of Department of Agricultural and Food Sciences (DiSTAl), this work integrates the knowledge and data relative to an Emilia Romagna (IT) constructed wetland plant, in order to expand the knowledge about this particular facility and of the system in general. By assaying antioxidants, both non- enzymatic and enzymatic, chlorophylls content and net photosynthetic rates, and by measuring the elemental composition of the specimens, the health status and the elemental uptake of the wetland plants sampled in different areas were investigated. The results were compared amongst the examined specimens with the aim to detect areas where there may be a higher stress due to a different wastewater composition, potentially varying along the constructed route. In addition, different parameters regarding the extraction and assay protocols were investigated, in order to optimise the procedure and to select the best conditions to perform the analyses, as well as to integrate information missing in literature or found as contradictory.
Resumo:
During pressure filtration, the filter cake can experience deformation. When the filter cake exhibits elastic rheological behaviour, it expands while the pressure is released and, if adjacent liquid is present, re-wetting may occur. Such an expanding filter cake can pick up liquid already removed, worsening solid-liquid separation performances. Undesired phenomena such as filter cake re-wetting run contrary to solid-liquid separation performances and, specifically, to the separation target of obtaining a high dry solid content. At the industrial level, even a small quantity of liquid that can be additionally removed is beneficial. Re-wetting phenomenon is investigated using two different limestone materials and different filters and felts, respectively. Water storage capacity of filters and felts and elastic properties of filters, felts, and filter cakes are investigated. The elastic tests performed show that the filters and the felts are non-linear viscoelastic materials and can have a potential for re-wetting, while the limestone filter cakes are not showing measurable elastic deformation under decompression. However, during a filtration test an additional felt layer placed under the filter seems to result in a slightly higher cake dryness, i.e., an increase of the cake dryness by around 1% only. This difference may not be attributed to the re-wetting effect.