2 resultados para Pore structure characterization, Silica Monoliths, Mesopores, Macropores

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work describes the synthesis of a propargylcarbamate-functionalized isophthalate ligand and its use in the solvothermal preparation of a new copper(II)-based metal organic framework named [Cu(1,3-YBDC)]ˑxH2O (also abbreviated as Cu-MOF. The characterization of this compound was performed using several complementary techniques such as infrared (ATR-FTIR) and Raman spectroscopy, X-ray powder diffraction spectroscopy (PXRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS) as well as thermal and surface area measurements. Synchrotron X-ray diffraction analysis revealed that this MOF contains a complex network of 5-substituted isophthalate anions bound to Cu(II) centers, arranged in pairs within paddlewheel (or “Chinese lantern”) structure with a short Cu…Cu distance of 2.633 Å. Quite unexpectedly, the apical atom in the paddlewheel structure belongs to the carbamate carbonyl oxygen atom. Such extra coordination by the propargylcarbamate groups drastically reduces the MOF porosity, a feature that was also confirmed by BET measurements. Indeed, its surface area was determined to be low (14.5 ± 0.8 m2/g) as its total pore volume (46 mm3/g). Successively the Cu-MOF was treated with HAuCl4 with the aim of studying the ability of the propargylcarbamate functionality to capture the Au(III) ion and reduce it to Au(0) to give gold nanoparticles (AuNPs). The overall amount of gold retained by the Cu-MOF/Au was determined by AAS while the amount of gold and its oxidation state on the surface of the MOF was studied by XPS. A glassy carbon (GC) electrode was drop-casted with a Cu-MOF suspension to electrochemically characterize the material through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The performance of the modified electrodes towards nitrite oxidation was tested by CV and chronoamperometry.