2 resultados para Pointers of fecal pollution

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study is based on the use of isotopes for evaluating the efficiency of nutrients removal of a wetland, in particular nitrogen and nitrates, also between the different habitats present in the wetland. Nutrients like nitrogen and phosphorus, normally distributed as fertilizers, are among the principal causes of diffuse pollution. This is particularly important in the Adriatic Sea, which is frequently subjected to eutrophication phenomena. So it is very crucial requalification of wetland, in which there are naturally depurative processes such as denitrification and plant uptake, which allow the reduction of pollutant loads that flow in water bodies. In this study nutrient reduction is analyzed in the wetland of the Comuna drain, which waters flow in the Venice lagoon. Chemical and isotopical analyses were performed on samples of water, vegetation, soil and sediments taken in the wetlands of the Comuna drain in four different periods of the year and on data of nitrogen and phosphorus concentration obtained by the LASA of the University of Padova. Values of total nitrogen and nitrates were obtained in order to evaluate the reduction within the different systems of the wetland. Instead, the isotopic values of nitrogen and carbon were used to evaluate which process influence more nitrogen reduction and to understand the origin of the nutrient, if it is from fertilizers, waste water or sewage. To conclude, the most important process in the wetland of the Comuna drain is plant uptake, in facts the bigger percentage of nitrogen reduction was in the period of vegetative growth. So it is important the study of isotopes in plant tissues and water residence time, whose increase would allow a greater reduction of nutrients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activities strongly influence environmental processes, and while human domination increases, biodiversity progressively declines in ecosystems worldwide. High genetic and phenotypic variability ensures functionality and stability of ecosystem processes through time and increases the resilience and the adaptive capacity of populations and communities, while a reduction in functional diversity leads to a decrease in the ability to respond in a changing environment. Pollution is becoming one of the major threats in aquatic ecosystem, and pharmaceutical and personal care products (PPCPs) in particular are a relatively new group of environmental contaminants suspected to have adverse effects on aquatic organisms. There is still a lake of knowledge on the responses of communities to complex chemical mixtures in the environment. We used an individual-trait-based approach to assess the response of a phytoplankton community in a scenario of combined pollution and environmental change (steady increasing in temperature). We manipulated individual-level trait diversity directly (by filtering out size classes) and indirectly (through exposure to PPCPs mixture), and studied how reduction in trait-diversity affected community structure, production of biomass and the ability of the community to track a changing environment. We found that exposure to PPCPs slows down the ability of the community to respond to an increasing temperature. Our study also highlights how physiological responses (induced by PPCPs exposure) are important for ecosystem processes: although from an ecological point of view experimental communities converged to a similar structure, they were functionally different.