2 resultados para Point pattern matching

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’utilizzo di informazioni di profondità è oggi di fondamentale utilità per molteplici settori applicativi come la robotica, la guida autonoma o assistita, la realtà aumentata e il monitoraggio ambientale. I sensori di profondità disponibili possono essere divisi in attivi e passivi, dove i sensori passivi ricavano le informazioni di profondità dall'ambiente senza emettere segnali, bensì utilizzando i segnali provenienti dall'ambiente (e.g., luce solare). Nei sensori depth passivi stereo è richiesto un algoritmo per elaborare le immagini delle due camere: la tecnica di stereo matching viene utilizzata appunto per stimare la profondità di una scena. Di recente la ricerca si è occupata anche della sinergia con sensori attivi al fine di migliorare la stima della depth ottenuta da un sensore stereo: si utilizzano i punti affidabili generati dal sensore attivo per guidare l'algoritmo di stereo matching verso la soluzione corretta. In questa tesi si è deciso di affrontare questa tematica da un punto di vista nuovo, utilizzando un sistema di proiezione virtuale di punti corrispondenti in immagini stereo: i pixel delle immagini vengono alterati per guidare l'algoritmo ottimizzando i costi. Un altro vantaggio della strategia proposta è la possibilità di iterare il processo, andando a cambiare il pattern in ogni passo: aggregando i passi in un unico risultato, è possibile migliorare il risultato finale. I punti affidabili sono ottenuti mediante sensori attivi (e.g. LiDAR, ToF), oppure direttamente dalle immagini, stimando la confidenza delle mappe prodotte dal medesimo sistema stereo: la confidenza permette di classificare la bontà di un punto fornito dall'algoritmo di matching. Nel corso della tesi sono stati utilizzati sensori attivi per verificare l'efficacia della proiezione virtuale, ma sono state anche effettuate analisi sulle misure di confidenza: lo scopo è verificare se le misure di confidenza possono rimpiazzare o assistere i sensori attivi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis contributes to the ArgMining 2021 shared task on Key Point Analysis. Key Point Analysis entails extracting and calculating the prevalence of a concise list of the most prominent talking points, from an input corpus. These talking points are usually referred to as key points. Key point analysis is divided into two subtasks: Key Point Matching, which involves assigning a matching score to each key point/argument pair, and Key Point Generation, which consists of the generation of key points. The task of Key Point Matching was approached using different models: a pretrained Sentence Transformers model and a tree-constrained Graph Neural Network were tested. The best model was the fine-tuned Sentence Transformers, which achieved a mean Average Precision score of 0.75, ranking 12 compared to other participating teams. The model was then used for the subtask of Key Point Generation using the extractive method in the selection of key point candidates and the model developed for the previous subtask to evaluate them.