6 resultados para Pneumatic Tires.

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle concentration is a principal factor that affects erosion rate of solid surfaces under particle impact, such as pipe bends in pneumatic conveyors; it is well known that a reduction in the specific erosion rate occurs under high particle concentrations, a phenomenon referred to as the “shielding effect”. The cause of shielding is believed to be increased likelihood of inter-particulate collisions, the high collision probability between incoming and rebounding particles reducing the frequency and the severity of particle impacts on the target surface. In this study, the effects of particle concentration on erosion of a mild steel bend surface have been investigated in detail using three different particulate materials on an industrial scale pneumatic conveying test rig. The materials were studied so that two had the same particle density but very different particle size, whereas two had very similar particle size but very different particle density. Experimental results confirm the shielding effect due to high particle concentration and show that the particle density has a far more significant influence than the particle size, on the magnitude of the shielding effect. A new method of correcting for change in erosivity of the particles in repeated handling, to take this factor out of the data, has been established, and appears to be successful. Moreover, a novel empirical model of the shielding effects has been used, in term of erosion resistance which appears to decrease linearly when the particle concentration decreases. With the model it is possible to find the specific erosion rate when the particle concentration tends to zero, and conversely predict how the specific erosion rate changes at finite values of particle concentration; this is critical to enable component life to be predicted from erosion tester results, as the variation of the shielding effect with concentration is different in these two scenarios. In addition a previously unreported phenomenon has been recorded, of a particulate material whose erosivity has steadily increased during repeated impacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lateral characteristics of tires in terms of lateral forces as a function of sideslip angle is a focal point in the prediction of ground loads and ground handling aircraft behavior. However, tests to validate such coefficients are not mandatory to obtain Aircraft Type Certification and so they are not available for ATR tires. Anyway, some analytical values are implemented in ATR calculation codes (Flight Qualities in-house numerical code and Loads in-house numerical code). Hence, the goal of my work is to further investigate and validate lateral tires characteristics by means of: exploitation and re-parameterization of existing test on NLG tires, implementation of easy-handle model based on DFDR parameters to compute sideslip angles, application of this model to compute lateral loads on existing flight tests and incident cases, analysis of results. The last part of this work is dedicated to the preliminary study of a methodology to perform a test to retrieve lateral tire loads during ground turning with minimum requirements in terms of aircraft test instrumentation. This represents the basis for future works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new knee test rig developed in University of Bologna used pneumatic cylinder as actuator system. Specific characterization and modelling about the pneumatic cylinder and the related devices are needed in better controlling the test rig. In this thesis, an experimental environment for the related device is set up with data acquisition system using Real-time Windows Target, Simulink, MatLab. Based on the experimental data, a fitted model for the pneumatic cylinder friction is found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente tesi si propone di determinare quale sia la situazione del mercato italiano e spagnolo sui pneumatici fuori uso (PFU) e quale sia il migliore metodo di costruzione degli elementi elastici da PFU. I risultati dell'analisi di mercato mostrano che l'introduzione del principio di responsabilità del produttore, introdotto in Italia solo nel 2011, sta portando ottimi risultati, e il problema di raccolta degli PFU è in via di risoluzione. Gli studi dinamici documentano che gli under rail paid (URP) costruiti da PFU rispettano tutte le necessità tecniche per l'utilizzo nelle linee ferroviarie sia convenzionali che ad alta velocità. Invece il Life Cycle Assessment (LCA) dimostra che il processo di costruzione degli URP da PFU decostruiti impatta meno rispetto a quello dei PFU triturati. I risultati del Life Cycle Cost (LCC) fanno propendere per un utilizzo degli URP nelle vie ferroviarie in quanto si ha una diminuzione dei costi di manutenzione.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, the interest of the automotive market for hybrid vehicles has increased due to the more restrictive pollutants emissions legislation and to the necessity of decreasing the fossil fuel consumption, since such solution allows a consistent improvement of the vehicle global efficiency. The term hybridization regards the energy flow in the powertrain of a vehicle: a standard vehicle has, usually, only one energy source and one energy tank; instead, a hybrid vehicle has at least two energy sources. In most cases, the prime mover is an internal combustion engine (ICE) while the auxiliary energy source can be mechanical, electrical, pneumatic or hydraulic. It is expected from the control unit of a hybrid vehicle the use of the ICE in high efficiency working zones and to shut it down when it is more convenient, while using the EMG at partial loads and as a fast torque response during transients. However, the battery state of charge may represent a limitation for such a strategy. That’s the reason why, in most cases, energy management strategies are based on the State Of Charge, or SOC, control. Several studies have been conducted on this topic and many different approaches have been illustrated. The purpose of this dissertation is to develop an online (usable on-board) control strategy in which the operating modes are defined using an instantaneous optimization method that minimizes the equivalent fuel consumption of a hybrid electric vehicle. The equivalent fuel consumption is calculated by taking into account the total energy used by the hybrid powertrain during the propulsion phases. The first section presents the hybrid vehicles characteristics. The second chapter describes the global model, with a particular focus on the energy management strategies usable for the supervisory control of such a powertrain. The third chapter shows the performance of the implemented controller on a NEDC cycle compared with the one obtained with the original control strategy.