4 resultados para Plasma de baixa temperatura

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gli acciai inossidabili austenitici presentano ottime caratteristiche che li rendono ideali in tutti quei settori in cui è richiesta un’elevata resistenza alla corrosione associata a caratteristiche estetiche e funzionali. L’acciaio AISI 316L risulta essere uno dei più studiati ed utilizzati, specie nell’industria alimentare e farmaceutica, dove leapparecchiature debbono poter essere sottoposte ad aggressive procedure di sanificazione. Tuttavia, la modesta resistenza meccanica e la bassa durezza superficiale di questo acciaio determinano un comportamento non soddisfacente dal punto di vista dell’usura da strisciamento in assenza di lubrificanti, situazione che si verifica sovente in molti macchinari dedicati a queste industrie. Tra le varie soluzioni, studiate per migliorare il suo comportamento tribologico, la cementazione a bassa temperatura (LowTemperature Carburizing, LTC) seguita dalla deposizione PE-CVD (Plasma-Enhanced Chemical Vapour Deposition) di un rivestimento di carbonio amorfo idrogenato (a-C:H), sembra essere molto promettente. In questo lavoro vengono analizzate le caratteristiche tribologiche dell’acciaio AISI 316L cementato a bassa temperatura e rivestito di carbonio amorfo idrogenato, tramite prove tribologiche di strisciamento non lubrificato in geometria di contatto pattino su cilindro. Sono state verificate, inoltre, le caratteristiche microstrutturali e meccaniche superficiali del rivestimento multistrato LTC/a-C:H tramite osservazioni morfologiche/topografiche, analisi in spettroscopia micro-Raman e misure di indentazione strumentata sulle superfici rivestite, seguite da analisi metallografia e misura dei profili di microdurezza Vickers in sezione trasversale. I risultati ottenuti dimostrano che, ai fini di contenere l’effetto negativo legato all’aumento di rugosità dovuto al trattamento LTC, è opportuno effettuare una lucidatura precedente al trattamento stesso, poiché effettuandola successivamente si rischierebbe dicomprometterne lo strato efficace. Inoltre, si osserva come il trattamento LTC incrementi le capacità del substrato di supportare il rivestimento a-C:H, portando ad un miglioramento delle prestazioni tribologiche, nelle prove di strisciamento non lubrificato. Infine, si dimostra come l’utilizzo di un rivestimento a base di carbonio amorfo idrogenato adeguatamente supportato permetta una riduzione dell’attrito (di oltre cinque volte) e dell’usura (di circa dieci ordini di grandezza) rispetto ai corrispondenti materiali non rivestiti.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il plasma, quarto stato della materia, rappresenta un gas ionizzato in cui ioni ed elettroni si muovono a diverse energie sotto l’azione di un campo elettro-magnetico applicato dall’esterno. I plasmi si dividono in plasmi di equilibrio e di non equilibrio termodinamico, quest’ultimi sono caratterizzati da un’alta temperatura elettronica (oltre 10000 K) e da una bassa temperatura traslazionale degli ioni e delle specie neutre (300-1000 K). I plasmi di non equilibrio trovano largo impiego nella microelettronica, nei processi di polimerizzazione, nell’industria biomedicale e del packaging, consentendo di effettuare trattamenti di sterilizzazione e attivazione superficiale. Il lavoro di tesi è incentrato sui processi di funzionalizzazione e polimerizzazione superficiale con l’obbiettivo di realizzare e caratterizzare sorgenti di plasma di non equilibrio a pressione atmosferica operanti in ambiente controllato. È stata realizzata una sorgente plasma operante a pressione atmosferica e in ambiente controllato per realizzare trattamenti di modifica superficiale e di polimerizzazione su substrati polimerici. L’efficacia e l’omogeneità dei trattamenti eseguiti sono stati valutati tramite misura dell’angolo di contatto. La caratterizzazione elettrica ha consentito di determinare i valori di densità di energia superficiale trasferita sui substrati al variare delle condizioni operative. Lo strato depositato durante il processo di polimerizzazione è stato analizzato qualitativamente tramite l’analisi chimica in spettroscopia infrarossa. L’analisi delle prove di funzionalizzazione dimostra l’uniformità dei processi plasma eseguiti; inoltre i valori dell’angolo di contatto misurati in seguito ai trattamenti risultano confrontabili con la letteratura esistente. Lo studio dei substrati trattati in atmosfera satura d’azoto ha rivelato una concentrazione superficiale di azoto pari al 3% attribuibile alla presenza di ammine, ammine protonate e gruppi ammidici; ciò conferma la bontà della soluzione realizzata e dei protocolli operativi adottati per la funzionalizzazione delle superfici. L’analisi spettroscopica dei trattamenti di polimerizzazione, ha fornito spettri IR confrontabili con la letteratura esistente indicando una buona qualità del polimero depositato (PEG). I valori misurati durante la caratterizzazione elettrica della sorgente realizzata risulteranno fondamentali in futuro per l’ottimizzazione del dispositivo. I dati raccolti infatti, determineranno le linee guida per il tailoring dei trattamenti plasma e per lo sviluppo della sorgente. Il presente lavoro di tesi, pur prendendo in esame una piccola parte delle applicazioni industriali dei plasmi non termici, conferma quanto queste siano pervasive nei comuni processi industriali evidenziandone le potenzialità e i numerosi campi d’applicazione. La tecnologia plasma è destinata ad essere imprescindibile per la ricerca di soluzioni innovative ai limiti dei processi tradizionali.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il plasma è denominato quarto stato della materia ed è generalmente definito come un gas ionizzato costituito da elettroni e ioni. In ambito industriale i plasmi hanno trovato impiego per diversi tipi di applicazione quali il trattamento di superfici, la degradazione e lo smaltimento di rifiuti, il taglio di materiali, primi fra tutti i metalli. In particolare i plasmi atmosferici di non equilibrio, che possiedono la caratteristica di mantenere una temperatura macroscopica paragonabile a quella ambiente, sono studiati anche per applicazioni in campo biomedicale, oltre che in quello industriale. Da alcuni anni sono quindi oggetto di indagine per le caratteristiche di sterilizzazione di fluidi o solidi, per la coagulazione e il trattamento di lesioni e lacerazioni, per trattamenti su superfici quali la pelle, per il trattamento di cellule tumorali e staminali o per interfacce dispositivi biomedicali – corpo umano. Questo nuovo settore di ricerca, in grande sviluppo, viene comunemente definito Plasma & Medicine. Poiché in ambito biomedicale, un trattamento plasma può interessare diverse tipologie di substrati biologici e materiali, è stato scelto come obiettivo della tesi la caratterizzazione di una sorgente di plasma di non equilibrio a pressione atmosferica, denominata Plasma Jet, posta ad interagire con substrati di diversa natura (metallico, dielettrico, liquido). La sorgente utilizzata è in grado di produrre un plasma freddo e biocompatibile, generando diverse specie chimiche che garantiscono effetti molto interessanti (sterilizzazione, accelerazione della coagulazione sanguigna, cura di infezioni) per un utilizzo a contatto con il corpo umano o con componenti ingegneristiche che devono venire ad interagire con esso, quali stent, cateteri, bisturi. La caratterizzazione è stata effettuata mediante l’ausilio di due tecniche diagnostiche: la Schlieren Imaging, che permette di studiare la fluidodinamica del gas, OES (Optical Emission Spettroscopy), che permette di analizzare la composizione chimica della piuma di plasma e di determinare le specie chimiche che si producono. Questo elaborato si propone quindi di fornire una breve introduzione sul mondo dei plasmi e sulle loro caratteristiche, citando alcuni dei settori in cui viene utilizzato, industriali e biomedicali, con particolare attenzione per questi ultimi. Successivamente saranno riportati i setup utilizzati per le acquisizioni e una discussione sui risultati ottenuti dalle diverse tecniche diagnostiche utilizzate sul Jet durante i trattamenti. In ultimo sono poi riportate le conclusioni in modo da presentare le caratteristiche più importanti del comportamento della sorgente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il presente elaborato è incentrato sulla modellizzazione del plasma di bordo nei dispositivi per la produzione di energia da fusione nucleare noti come tokamak. La tecnologia che nel corso di tutta la seconda metà del XX secolo fino ad oggi è stata sviluppata a questo fine deve necessariamente scontrarsi con alcuni limiti. Nei tokamak il confinamento del plasma è di tipo magnetico e vincola le particelle a muoversi di moto elicoidale all'interno del vessel, tuttavia il confinamento non risulta perfetto e parte dell'energia si scarica sulle pareti della camera, rischiando pertanto di fondere i materiali. Alcune strategie possono essere messe in atto per limitare questo problema, per esempio agendo sulla geometria del tokamak, oppure sulla fisica, inducendo nel plasma una data concentrazione di impurezze che ionizzino irraggiando parte dell'energia di plasma. Proprio tale meccanismo di perdita è stato simulato in un modello monodimensionale di plasma monofluido di bordo. I risultati del codice numerico relativo al modello dimostrano che per concentrazioni di impurezze crescenti è possibile diminuire in modo significativo flusso di calore e temperatura al divertore. Per di più risulta possibile controllare la posizione del fronte di irraggiamento per mezzo di parametri di controllo del plasma quali la pressione. Si osserva inoltre l'insorgere del cosiddetto fenomeno di biforcazione alle basse temperature di divertore, fenomeno in cui il plasma si comporta in modo instabile a causa di fenomeni fisici tipici delle basse energie ("detachment") e a seguito del quale può improvvisamente spegnersi (disruzione). Infine lo stesso modello è stato migliorato inserendo l'ipotesi di plasma bifluido. Anche per gli ioni viene osservato il fenomeno di biforcazione. I risultati numerici evidenziano le dinamiche dello scambio energetico fra le specie gettando le basi di una progettazione efficiente della chimica del plasma finalizzata al raffreddamento del divertore.