7 resultados para Plants, Heat production in.

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

̀ qui presentato lo studio della produzione della risonanza K∗0 in collisioni p-Pb con l’esperimento ALICE presso LHC. L’elaborato si compone di una introduzione sulla natura del fenomeno studiato: la formazione del Quark Gluon Plasma (QGP), uno stato della materia fortemente interagente ad alte temperatura e densità d’energia. Vengono descritte le segnature studiate ai fini di identificare il suddetto fenomeno, riportando come esempio concreto i risultati sperimentali. Successivamente l’acceleratore di particelle, LHC, e l’esperimento, ALICE, vengono brevemente introdotti. Più in dettaglio ven- gono descritti i rivelatori di ALICE effettivamente usati per l’analisi, a cui sono dedicate sezioni approfondite. Viene infine introdotta l’analisi e le sue motivazioni. Il metodo utilizzato e lo studio degli errori da associare alla misura sono illustrati in ogni loro passo e supportati dai risultati ottenuti. La discussione finale dei risultati include il confronto con i risultati preceden- temente ottenuti da ALICE in collisioni pp e Pb-Pb e da altri esperimenti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The benthic dinoflagellate O. ovata represents a serious threat for human health and for the ecology of its blooming areas: thanks to its toxicity this microalga has been responsible for several cases of human intoxication and mass mortalities of benthic invertebrates. Although the large number of studies on this dinoflagellate, the mechanisms underpinning O. ovata growth and toxin production are still far to be fully understood. In this work we have enriched the dataset on this species by carrying out a new experiment on an Adriatic O. cf. ovata strain. Data from this experiment (named Beta) and from another comparable experiment previously conducted on the same strain (named Alpha), revealed some interesting aspects of this dinoflagellate: it is able to grow also in a condition of strong intracellular nutrient deficiency (C:P molar ratio > 400; C:N > 25), reaching extremely low values of chlorophyll-a to carbon ratio (0.0004). Was also found a significant inverse relationships (r > -0.7) between cellular toxin to carbon and cellular nutrient to carbon ratios of experiment Alpha. In the light of these result, we hypothesized that in O. cf. ovata nutrient-stress conditions (intended as intracellular nutrient deficiency) can cause: i) an increase in toxin production; ii) a strong decrease in chlorophyll-a synthesis; iii) a lowering of metabolism associated with the formation of a sort of resting stage. We then used a modelling approach to test and critically evaluate these hypotheses in a mechanistic way: newly developed formulation describing toxin production and fate, and ad hoc changes in the already existent formulations describing chlorophyll synthesis, rest respiration, and mortality, have been incorporated in a simplified version of the European Regional Seas Ecosystem Model (ERSEM), together with a new ad hoc parameterization. The adapted model was able to accurately reproduce many of the trends observed in the Alpha experiment, allowing us to support our hypotheses. Instead the simulations of the experiment Beta were not fully satisfying in quantitative terms. We explained this gap with the presumed different physiological behaviors between the algae of the two experiments, due to the different pre-experimental periods of acclimation: the model was not able to reproduce acclimation processes in its simulations of the experiment Beta. Thus we attempt to simulate the acclimation of the algae to nutrient-stress conditions by manual intervention on some parameters of nutrient-stress thresholds, but we received conflicting results. Further studies are required to shed light on this interesting aspect. In this work we also improve the range of applicability of a state of the art marine biogeochemical model (ERSEM) by implementing in it an ecological relevant process such as the production of toxic compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global climate change is impacting coral reefs worldwide, with approximately 19% of reefs being permanently degraded, 15% showing symptoms of imminent collapse, and 20% at risk of becoming critically affected in the next few decades. This alarming level of reef degradation is mainly due to an increase in frequency and intensity of natural and anthropogenic disturbances. Recent evidence has called into question whether corals have the capacity to acclimatize or adapt to climate changes and some groups of corals showed inherent physiological tolerance to environmental stressors. The aim of the present study was to evaluate mRNA expression patterns underlying differences in thermal tolerance in specimen of the common reef-building coral Pocillopora verrucosa collected at different locations in Bangka Island waters (North Sulawesi, Indonesia). Part of the experimental work was carried out at the CoralEye Reef Research Outpost (Bangka Island). This includes sampling of corals at selected sites and at different depths (3 and 12 m) as well as their experimental exposure to an increased water temperature under controlled conditions for 3 and 7 days. Levels of mRNAs encoding ATP synthase (ATPs) NADH dehydrogenase (NDH) and a 70kDa Heat Shock Protein (HSP70) were evaluated by quantitative real time PCR. Transcriptional profiles evaluated under field conditions suggested an adaptation to peculiar local environmental conditions in corals collected at different sites and at the low depth. Nevertheless, high–depth collected corals showed a less pronounced site-to-site separation suggesting more homogenous environmental conditions. Exposure to an elevated temperature under controlled conditions pointed out that corals adapted to the high depth are more sensitive to the effects of thermal stress, so that reacted to thermal challenge by significantly over-expressing the selected gene products. Being continuously exposed to fluctuating environmental conditions, low-depth adapted corals are more resilient to the stress stimulus, and indeed showed unaffected or down-regulated mRNA expression profiles. Overall these results highlight that transcriptional profiles of selected genes involved in cellular stress response are modulated by natural seasonal temperature changes in P. verrucosa. Moreover, specimens living in more variable habitats (low-depth) exhibit higher basal HSP70 mRNA levels, possibly enhancing physiological tolerance to environmental stressors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Groundwater represents the most important raw material. Germany struggles to maintain the best water quality possible by providing advanced monitoring systems and legal measures to prevent further pollution. In areas involved in the intensive growing of plantations, one of the major contamination factors derives from nitrate. The aim of this master thesis is the characterisation of the Water Protection Area of Bremen (Germany). Denitrification is a natural process, representing the best means of natural reduction of the hazardous nitrate ion, which is dangerous both for human health and for the development of eutrophication. The study has been possible thanks to the collaboration with the University of Bremen, the Geological Service of Bremen (GDfB) and Peter Spiedt (Water Supply Company of Bremen). It will be defined whether nitrate amounts in the groundwater still overcome the threshold legally imposed, and state if the denitrification process takes place, thanks to new samples collected in 2015 and their integration with historical data. Gas samples have been gathered to test them with the “N2/Ar method”, which is able to estimate the denitrification rate quantitatively. Analyses stated the effective occurrence of the reaction, nevertheless showing that it only affects the chemical of the deep aquifers and not shallow ones. Temporal trends concentrations of nitrate have shown that no real improvement took place in the past years. It will be commented that despite the denitrification being responsible for an efficacious lowering in the nitrate ion, it needs reactive materials to take place. Since the latter are finite elements, it is not an endless process. It is thus believed that is clearly necessary to adopt a better attitude in order to maintain the best chemical qualities possible in such an important area, providing drinking water.