4 resultados para Pion interferometry
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
La realizzazione di stati non classici del campo elettromagnetico e in sistemi di spin è uno stimolo alla ricerca, teorica e sperimentale, da almeno trent'anni. Lo studio di atomi freddi in trappole di dipolo permette di avvicinare questo obbiettivo oltre a offrire la possibilità di effettuare esperimenti su condesati di Bose Einstein di interesse nel campo dell'interferometria atomica. La protezione della coerenza di un sistema macroscopico di spin tramite sistemi di feedback è a sua volta un obbiettivo che potrebbe portare a grandi sviluppi nel campo della metrologia e dell'informazione quantistica. Viene fornita un'introduzione a due tipologie di misura non considerate nei programmi standard di livello universitario: la misura non distruttiva (Quantum Non Demolition-QND) e la misura debole. Entrambe sono sfruttate nell'ambito dell'interazione radiazione materia a pochi fotoni o a pochi atomi (cavity QED e Atom boxes). Una trattazione delle trappole di dipolo per atomi neutri e ai comuni metodi di raffreddamento è necessaria all'introduzione all'esperimento BIARO (acronimo francese Bose Einstein condensate for Atomic Interferometry in a high finesse Optical Resonator), che si occupa di metrologia tramite l'utilizzo di condensati di Bose Einstein e di sistemi di feedback. Viene descritta la progettazione, realizzazione e caratterizzazione di un servo controller per la stabilizzazione della potenza ottica di un laser. Il dispositivo è necessario per la compensazione del ligh shift differenziale indotto da un fascio laser a 1550nm utilizzato per creare una trappola di dipolo su atomi di rubidio. La compensazione gioca un ruolo essenziale nel miglioramento di misure QND necessarie, in uno schema di feedback, per mantenere la coerenza in sistemi collettivi di spin, recentemente realizzato.
Measurement of CP asymmetries in $\lambda^0_b \to pk^-$ and $\lambda^0_b \to p \pi^-$ decays at LHCb
Resumo:
The LHCb experiment has been designed to perform precision measurements in the flavour physics sector at the Large Hadron Collider (LHC) located at CERN. After the recent observation of CP violation in the decay of the Bs0 meson to a charged pion-kaon pair at LHCb, it is interesting to see whether the same quark-level transition in Λ0b baryon decays gives rise to large CP-violating effects. Such decay processes involve both tree and penguin Feynman diagrams and could be sensitive probes for physics beyond the Standard Model. The measurement of the CP-violating observable defined as ∆ACP = ACP(Λ0b → pK−)−ACP(Λ0b →pπ−),where ACP(Λ0b →pK−) and ACP(Λ0b →pπ−) are the direct CP asymmetries in Λ0b → pK− and Λ0b → pπ− decays, is presented for the first time using LHCb data. The procedure followed to optimize the event selection, to calibrate particle identification, to parametrise the various components of the invariant mass spectra, and to compute corrections due to the production asymmetry of the initial state and the detection asymmetries of the final states, is discussed in detail. Using the full 2011 and 2012 data sets of pp collisions collected with the LHCb detector, corresponding to an integrated luminosity of about 3 fb−1, the value ∆ACP = (0.8 ± 2.1 ± 0.2)% is obtained. The first uncertainty is statistical and the second corresponds to one of the dominant systematic effects. As the result is compatible with zero, no evidence of CP violation is found. This is the most precise measurement of CP violation in the decays of baryons containing the b quark to date. Once the analysis will be completed with an exhaustive study of systematic uncertainties, the results will be published by the LHCb Collaboration.
Resumo:
With the outlook of improving seismic vulnerability assessment for the city of Bishkek (Kyrgyzstan), the global dynamic behaviour of four nine-storey r.c. large-panel buildings in elastic regime is studied. The four buildings were built during the Soviet era within a serial production system. Since they all belong to the same series, they have very similar geometries both in plan and in height. Firstly, ambient vibration measurements are performed in the four buildings. The data analysis composed of discrete Fourier transform, modal analysis (frequency domain decomposition) and deconvolution interferometry, yields the modal characteristics and an estimate of the linear impulse response function for the structures of the four buildings. Then, finite element models are set up for all four buildings and the results of the numerical modal analysis are compared with the experimental ones. The numerical models are finally calibrated considering the first three global modes and their results match the experimental ones with an error of less then 20%.
Resumo:
The aim of this Thesis work is to study the multi-frequency properties of the Ultra Luminous Infrared Galaxy (ULIRG) IRAS 00183-7111 (I00183) at z = 0.327, connecting ALMA sub-mm/mm observations with those at high energies in order to place constraints on the properties of its central power source and verify whether the gas traced by the CO may be responsible for the obscuration observed in X-rays. I00183 was selected from the so-called Spoon diagnostic diagram (Spoon et al. 2007) for mid-infrared spectra of infrared galaxies based on the equivalent width of the 6.2 μm Polycyclic Aromatic Hydrocarbon (PAH) emission feature versus the 9.7 μm silicate strength. Such features are a powerful tool to investigate the contribution of star formation and AGN activity in this class of objects. I00183 was selected from the top-left region of the plot where the most obscured sources, characterized by a strong Si absorption feature, are located. To link the sub-mm/mm to the X-ray properties of I00183, ALMA archival Cycle 0 data in Band 3 (87 GHz) and Band 6 (270 GHz) have been calibrated and analyzed, using CASA software. ALMA Cycle 0 was the Early Science program for which data reprocessing is strongly suggested. The main work of this Thesis consisted in reprocessing raw data to provide an improvement with respect to the available archival products and results, which were obtained using standard procedures. The high-energy data consists of Chandra, XMM-Newton and NuSTAR observations which provide a broad coverage of the spectrum in the energy range 0.5 − 30 keV. Chandra and XMM archival data were used, with an exposure time of 22 and 22.2 ks, respectively; their reduction was carried out using CIAO and SAS software. The 100 ks NuSTAR are still private and the spectra were obtained by courtesy of the PI (K. Iwasawa). A detailed spectral analysis was done using XSPEC software; the spectral shape was reproduced starting from simple phenomenological models, and then more physical models were introduced to account for the complex mechanisms that involve this source. In Chapter 1, an overview of the scientific background is discussed, with a focus on the target, I00183, and the Spoon diagnostic diagram, from which it was originally selected. In Chapter 2, the basic principles of interferometry are briefly introduced, with a description of the calibration theory applied to interferometric observations. In Chapter 3, ALMA and its capabilities, both current and future, are shown, explaining also the complex structure of the ALMA archive. In Chapter 4, the calibration of ALMA data is presented and discussed, showing also the obtained imaging products. In Chapter 5, the analysis and discussion of the main results obtained from ALMA data is presented. In Chapter 6, the X-ray observations, data reduction and spectral analysis are reported, with a brief introduction to the basic principle of X-ray astronomy and the instruments from which the observations were carried out. Finally, the overall work is summarized, with particular emphasis on the main obtained results and the possible future perspectives.