4 resultados para Physiology of Green mussel Perna Viridis
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The interest of the scientific community towards organic pollutants in freshwater streams is fairly recent. During the past 50 years, thousands of chemicals have been synthesized and released into the general environment. Nowadays their occurrence and effects on several organism, invertebrates, fish, birds, reptiles and also humans are well documented. Because of their action, some of these chemicals have been defined as Endocrine Disrupters Compounds (EDCs) and the public health implications of these EDCs have been the subject of scientific debate. Most interestingly, among those that were noticed to have some influence and effects on the endocrine system were the estrone, the 17β-estradiol, the 17α-estradiol, the estriol, the 17α-ethinylestradiol, the testosterone and the progesterone. This project focused its attention on the 17β-estradiol. Estradiol, or more precisely, 17β-estradiol (also commonly referred to as E2) is a human sex hormone. It belongs to the class of steroid hormones. In spite of the effort to remove these substances from the effluents, the actual wastewater treatment plants are not able to degrade or inactivate these organic compounds that are continually poured in the ecosystem. Through this work a new system for the wastewater treatment was tested, to assess the decrease of the estradiol in the water. It involved the action of Chlorella vulgaris, a fresh water green microalga belonging to the family of the Chlorellaceae. This microorganism was selected for its adaptability and for its photosynthetic efficiency. To detect the decrease of the target compound in the water a CALUX bioassay analysis was chosen. Three different experiments were carried on to pursue the aim of the project. By analysing their results several aspects emerged. It was assessed the presence of EDCs inside the water used to prepare the culture media. C. vulgaris, under controlled conditions, could be efficient for this purpose, although further researches are essential to deepen the knowledge of this complex phenomenon. Ultimately by assessing the toxicity of the effluent against C. vulgaris, it was clear that at determined concentrations, it could affect the normal growth rate of this microorganism.
Resumo:
Since the industrial revolution, the ocean has absorbed around one third of the anthropogenic CO2, which induced a profound alteration of the carbonate system commonly known as ocean acidification. Since the preindustrial times, the average ocean surface water pH has fallen by 0.1 units, from approximately 8.2 to 8.1 and a further decrease of 0.4 pH units is expected for the end of the century. Despite their microscopic size, marine diatoms are bio-geo-chemically a very important group, responsible for the export of massive amount of carbon to deep waters and sediments. The knowledge of the potential effects of ocean acidification on the phytoplankton growth and on biological pump is still at its infancy. This study wants to investigate the effect of ocean acidification on the growth of the diatom Skeletonema marinoi and on its aggregation, using a mechanistic approach. The experiment consisted of two treatments (Present and Future) representing different pCO2 conditions and two sequential experimental phases. During the cell growth phase a culture of S. marinoi was inoculated into transparent bags and the effect of ocean acidification was studied on various growth parameters, including DOC and TEP production. The aggregation phase consisted in the incubation of the cultures into rolling tanks where the sinking of particles through the water column was simulated and aggregation promoted. Since few studies investigated the effect of pH on the growth of S. marinoi and none used pH ranges that are compatible with the OA scenarios, there were no baselines. I have shown here, that OA does not affect the cell growth of S. marinoi, suggesting that the physiology of this species is robust in respect to the changes in the carbonate chemistry expected for the end of the century. Furthermore, according to my results, OA does not affect the aggregation of S. marinoi in a consistent manner, suggesting that this process has a high natural variability but is not influenced by OA in a predictable way. The effect of OA was tested over a variety of factors including the number of aggregates produced, their size and sinking velocity, the algal, bacterial and TEP content. Many of these variables showed significant treatment effects but none of these were consistent between the two experiments.
Resumo:
2-Phenoxyethanol (ethylene glycol monophenyl ether) is used as solvent for cellulose acetate, dyes, inks, and resins; it is a synthetic intermediate in the production of plasticizers, pharmaceuticals, and fragrances. Phenoxyethanol is obtained industrially by reaction of phenol with ethylene oxide, in the presence of an homogeneous alkaline catalyst, typically sodium hydroxide. The yield is not higher than 95-96%, because of the formation of polyethoxylated compounds. However, the product obtained may not be acceptable for use in cosmetic preparations and fragrance formulations, due to presence of a pungent “metallic” odor which masks the pleasant odor of the ether, deriving from residual traces of the metallic catalyst. Here we report a study aimed at using ethylene carbonate in place of ethylene oxide as the reactant for phenoxyethanol synthesis; the use of carbonates as green nucleophilic reactants is an important issue in the context of a modern and sustainable chemical industry. Moreover, in the aim of developing a process which might adhere the principles of Green Chemistry, we avoided the use of solvents, and used heterogeneous basic catalysts. We carried out the reaction by using various molar ratios between phenol and ethylene carbonate, at temperatures ranging between 180 and 240°C, with a Na-mordenite catalyst. Under specific conditions, it was possible to obtain total phenol conversion with >99% yield to phenoxyethanol in few hours reaction time, using a moderate excess of ethylene carbonate. Similar results, but with longer reaction times, were obtained using a stoichiometric feed ratio of reactants. One important issue of the research was finding conditions under which the leaching of Na was avoided, and the catalyst could be separated and reused for several reaction batches.
Resumo:
The heart is a wonderful but complex organ: it uses electrochemical mechanisms in order to produce mechanical energy to pump the blood throughout the body and allow the life of humans and animals. This organ can be subject to several diseases and sudden cardiac death (SCD) is the most catastrophic manifestation of these diseases, responsible for the death of a large number of people throughout the world. It is estimated that 325000 Americans annually die for SCD. SCD most commonly occurs as a result of reentrant tachyarrhythmias (ventricular tachycardia (VT) and ventricular fibrillation (VF)) and the identification of those patients at higher risk for the development of SCD has been a difficult clinical challenge. Nowadays, a particular electrocardiogram (ECG) abnormality, “T-wave alternans” (TWA), is considered a precursor of lethal cardiac arrhythmias and sudden death, a sensitive indicator of risk for SCD. TWA is defined as a beat-to-beat alternation in the shape, amplitude, or timing of the T-wave on the ECG, indicative of the underlying repolarization of cardiac cells [5]. In other words TWA is the macroscopic effect of subcellular and celluar mechanisms involving ionic kinetics and the consequent depolarization and repolarization of the myocytes. Experimental activities have shown that TWA on the ECG is a manifestation of an underlying alternation of long and short action potential durations (APDs), the so called APD-alternans, of cardiac myocytes in the myocardium. Understanding the mechanism of APDs-alternans is the first step for preventing them to occur. In order to investigate these mechanisms it’s very important to understand that the biological systems are complex systems and their macroscopic properties arise from the nonlinear interactions among the parts. The whole is greater than the sum of the parts, and it cannot be understood only by studying the single parts. In this sense the heart is a complex nonlinear system and its way of working follows nonlinear dynamics; alternans also, they are a manifestation of a phenomenon typical in nonlinear dynamical systems, called “period-dubling bifurcation”. Over the past decade, it has been demonstrated that electrical alternans in cardiac tissue is an important marker for the development of ventricular fibrillation and a significant predictor for mortality. It has been observed that acute exposure to low concentration of calcium does not decrease the magnitude of alternans and sustained ventricular Fibrillation (VF) is still easily induced under these condition. However with prolonged exposure to low concentration of calcium, alternans disappears, but VF is still inducible. This work is based on this observation and tries to make it clearer. The aim of this thesis is investigate the effect of hypocalcemia spatial alternans and VF doing experiments with canine hearts and perfusing them with a solution with physiological ionic concentration and with a solution with low calcium concentration (hypocalcemia); in order to investigate the so called memory effect, the experimental activity was modified during the way. The experiments were performed with the optical mapping technique, using voltage-sensitive dye, and a custom made Java code was used in post-processing. Finding the Nolasco and Dahlen’s criterion [8] inadequate for the prediction of alternans, and takin into account the experimental results, another criterion, which consider the memory effect, has been implemented. The implementation of this criterion could be the first step in the creation of a method, AP-based, discriminating who is at risk if developing VF. This work is divided into four chapters: the first is a brief presentation of the physiology of the heart; the second is a review of the major theories and discovers in the study of cardiac dynamics; the third chapter presents an overview on the experimental activity and the optical mapping technique; the forth chapter contains the presentation of the results and the conclusions.