1 resultado para Physician and patient.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Aston University Research Archive (30)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (27)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (33)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (9)
- Biodiversity Heritage Library, United States (1)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (104)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CentAUR: Central Archive University of Reading - UK (15)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (11)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (11)
- Digital Archives@Colby (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (36)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (16)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (3)
- Harvard University (6)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico do Porto, Portugal (4)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- National Center for Biotechnology Information - NCBI (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (12)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (7)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (99)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (19)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (36)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad del Rosario, Colombia (25)
- Universidad Politécnica de Madrid (5)
- Universidade do Minho (3)
- Universidade Federal do Pará (8)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (180)
- Université de Montréal (1)
- Université de Montréal, Canada (26)
- University of Michigan (13)
- University of Queensland eSpace - Australia (40)
- University of Washington (7)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
The main objective of the framework we are proposing is to help the physician obtain information about the patient's condition in order to reach the \emph{correct} diagnosis as soon as possible. In our proposal, the number of interactions between the physician and the patient is reduced to a strict minimum on the one hand and, on the other hand, it is made possible to increase the number of questions to be asked if the uncertainty about the diagnosis persists. These advantages are due to the fact that (i) we implement a reasoning component that allows us to predict a symptom from another symptom without explicitly asking the patient, (ii) we consider non-binary values for the weights associated with the symptoms, we introduce a dataset filtering process in order to choose which partition should be used with respect to some particular characteristics of the patient, and, in addition, (iv) it was added new functionality to the framework: the ability to detect further future risks of a patient already knowing his pathology. The experimental results we obtained are very encouraging