4 resultados para Perovskite.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The primary goal of this work is related to the extension of an analytic electro-optical model. It will be used to describe single-junction crystalline silicon solar cells and a silicon/perovskite tandem solar cell in the presence of light-trapping in order to calculate efficiency limits for such a device. In particular, our tandem system is composed by crystalline silicon and a perovskite structure material: metilammoniumleadtriiodide (MALI). Perovskite are among the most convenient materials for photovoltaics thanks to their reduced cost and increasing efficiencies. Solar cell efficiencies of devices using these materials increased from 3.8% in 2009 to a certified 20.1% in 2014 making this the fastest-advancing solar technology to date. Moreover, texturization increases the amount of light which can be absorbed through an active layer. Using Green’s formalism it is possible to calculate the photogeneration rate of a single-layer structure with Lambertian light trapping analytically. In this work we go further: we study the optical coupling between the two cells in our tandem system in order to calculate the photogeneration rate of the whole structure. We also model the electronic part of such a device by considering the perovskite top cell as an ideal diode and solving the drift-diffusion equation with appropriate boundary conditions for the silicon bottom cell. We have a four terminal structure, so our tandem system is totally unconstrained. Then we calculate the efficiency limits of our tandem including several recombination mechanisms such as Auger, SRH and surface recombination. We focus also on the dependence of the results on the band gap of the perovskite and we calculare an optimal band gap to optimize the tandem efficiency. The whole work has been continuously supported by a numerical validation of out analytic model against Silvaco ATLAS which solves drift-diffusion equations using a finite elements method. Our goal is to develop a simpler and cheaper, but accurate model to study such devices.
Resumo:
Le celle a combustibile ad ossido solido (SOFC) sono reattori elettrochimici che convertono l’energia chimica di un gas combustibile direttamente in energia elettrica con un’alta efficienza e con basse emissioni. Il materiale più comunemente usato come anodo, il Ni/YSZ cermet, mostra però numerosi svantaggi nell’applicazione quali la suscettibilità all’avvelenamento da zolfo e la deposizione di coke per cracking degli idrocarburi usati come combustibile. E’ perciò necessario sviluppare materiali alternativi che sopperiscano a questi problemi. Il titanato di stronzio drogato con lantanio con stechiometria La0.4Sr0.4TiO3 (LST) è stato scelto come anodo alternativo per le ottime proprietà possedute. Lo scopo del lavoro di tesi è stato quindi lo studio dell’influenza della natura dei precursori, delle condizioni di sintesi e dell’aggiunta di agenti porizzanti necessari per l’ottenimento della fase perovskitica pura e con porosità controllata. In un primo tempo è stata verificata la possibilità di ottenere la fase La0.4Sr0.4TiO3 pura mediante sintesi allo stato solido, trattando termicamente miscele di precursori diversi. I risultati ottenuti hanno evidenziato che l’utilizzo di nitrati metallici porta a risultati migliori rispetto all’utilizzo di carbonati ed ossidi poiché permette la formazione della fase perovskite a temperature inferiori e con una purezza maggiore. Poiché l’analisi elementare sui materiali preparati in questa prima fase ha evidenziato un problema sulla stechiometria, il metodo di sintesi è stato ottimizzato solubilizzando preventivamente i precursori di lantanio e stronzio e determinandone il titolo mediante ICP. Inoltre, sono state effettuate delle sintesi utilizzando TiO2 a diversa area superficiale, per verificare l’effetto sulle fasi formate di una maggior reattività di questo componente. Per completezza la perovskite è stata sintetizzata anche tramite sintesi sol-gel, utilizzando il metodo Pechini, ottenendo a 700°C la fase pura. L’analisi morfologica ha evidenziato che le polveri con caratteristiche migliori per la formatura sono quelle ottenute tramite sintesi allo stato solido. Le pastiglie prodotte, miscelando tali polveri e agenti porizzanti opportuni, hanno evidenziato la stabilità della fase perovskitica voluta ma anche la necessità di ottimizzare l’aggiunta del porizzante per avere una porosità adeguata all’applicazione del sistema quale anodo SOFC.
Resumo:
Questa tesi descrive l’attività scientifica svolta presso l’istituto CNR-ISTEC di Faenza. Lo scopo è stato lo studio e l’ottimizzazione del processo per la realizzazione di una membrana ceramica permselettiva all’idrogeno usufruibile in applicazioni industriali. Grazie alle prove effettuate è stata possibile la realizzazione tramite colaggio su nastro dei due strati ceramici che formano la membrana: un supporto poroso e un film sottile e denso. I nastri, dopo essiccamento, sono stati tagliati con la geometria desiderata, impilati uno sull’altro, termocompressi e sinterizzati. L’attività svolta ha permesso l’ingegnerizzazione di una membrana ad elevato contenuto tecnologico con le proprietà necessarie per poter essere impiegata in un processo di purificazione di idrogeno più semplice, efficiente ed economico rispetto a quelli utilizzati fino ad ora.
Resumo:
Le fuel cells sono considerate una delle tecnologie più promettenti nel campo della conversione di energia elettrica. Le motivazioni principali alla base dello sviluppo delle fuel cells sono varie, quali la continua e drammatica diminuzione dei combustibili fossili e le conseguenze del consumo degli stessi sull’ambiente. Sistemi analoghi possono essere utilizzati per conservare l’energia attraverso la produzione di H2 per mezzo dell’elettrolisi dell’H2O in elettrolizzatori. I sistemi peroskitici LaMO3 sono utilizzati come elettrodi e come elettroliti. Particolare interesse rivestono in questo ambito i sistemi LaSrFe. in questo lavoro sono state studiate le condizioni sperimentali per la produzione di uno strato a base di LaSrFe attraverso la precipitazione di idrossidi assistita per via elettrochimica su un supporto conduttore al fine di produrre uno strato LaSrFeO3 tipo perosvkitico. Sono state analizzate le condizioni di reazione in condizione galvano statiche in funzione della corrente, dei tempi di sintesi e della soluzione delle specie generatrici di basi. Questi parametri determinano potenziale e pH della soluzione in prossimità dell’elettrodo e sono fondamentali per il controllo della precipitazione e della deposizione.