2 resultados para Pentacianoferrato(ll)
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Background: l’intervento di artroprotesi inversa di spalla sta assumendo sempre più importanza all’interno dell’approccio chirurgico della spalla. Il Concetto Bobath viene somministrato solitamente a pazienti con problematiche neurologiche centrali (es. ictus), ma si è visto molto efficace nel ristabilire un’importante stabilità scapolare a livello dell’arto superiore. Obiettivo: valutare il dolore e la funzionalità di spalla in persone con protesi inversa di spalla in seguito ad un percorso riabilitativo implementato da tecniche appartenenti al Concetto Bobath. Metodi: sono stati selezionati tre soggetti (3 F) di et. media di 74 anni sottoposti ad intervento di artroprotesi inversa di spalla e successivamente a trattamento riabilitativo con tecniche appartenenti al Concetto Bobath. I soggetti partecipanti sono stati valutati durante e alla fine del percorso riabilitativo attraverso l’utilizzo della scala NRS per il dolore, mentre per la funzionalità di spalla la UCLA Shoulder Scale), la Constant-Murley Scale e la DASH. I limiti presenti in questo studio sono attribuibili sia al fatto che nelle banche dati sono assenti studi che riguardano lo stesso argomento, sia al fatto che il numero di pazienti entrati a far parte dello studio è molto limitato sia per le complicanze durante il trattamento o l’interruzione del trattamento in alcuni pazienti. Risultati: al termine della sperimentazione, tutti i soggetti hanno presentato un miglioramento delle misure di outcome. Un importante miglioramento si è notato nella stabilità scapolare, nei compensi muscolari e nel dolore. I risultati sono stati poi confrontati con gli outcome di pazienti trattati secondo protocolli standardizzati, appartenenti a studi presenti all’interno delle banche dati. Conclusioni: l’utilizzo di tecniche appartenenti al Concetto Bobath sembra essere efficace in pazienti sottoposti ad artroprotesi inversa di spalla. Tuttavia, sono necessari ulteriori studi per verificarne gli effettivi effetti.
Resumo:
Every year, thousand of surgical treatments are performed in order to fix up or completely substitute, where possible, organs or tissues affected by degenerative diseases. Patients with these kind of illnesses stay long times waiting for a donor that could replace, in a short time, the damaged organ or the tissue. The lack of biological alternates, related to conventional surgical treatments as autografts, allografts, e xenografts, led the researchers belonging to different areas to collaborate to find out innovative solutions. This research brought to a new discipline able to merge molecular biology, biomaterial, engineering, biomechanics and, recently, design and architecture knowledges. This discipline is named Tissue Engineering (TE) and it represents a step forward towards the substitutive or regenerative medicine. One of the major challenge of the TE is to design and develop, using a biomimetic approach, an artificial 3D anatomy scaffold, suitable for cells adhesion that are able to proliferate and differentiate themselves as consequence of the biological and biophysical stimulus offered by the specific tissue to be replaced. Nowadays, powerful instruments allow to perform analysis day by day more accurateand defined on patients that need more precise diagnosis and treatments.Starting from patient specific information provided by TC (Computed Tomography) microCT and MRI(Magnetic Resonance Imaging), an image-based approach can be performed in order to reconstruct the site to be replaced. With the aid of the recent Additive Manufacturing techniques that allow to print tridimensional objects with sub millimetric precision, it is now possible to practice an almost complete control of the parametrical characteristics of the scaffold: this is the way to achieve a correct cellular regeneration. In this work, we focalize the attention on a branch of TE known as Bone TE, whose the bone is main subject. Bone TE combines osteoconductive and morphological aspects of the scaffold, whose main properties are pore diameter, structure porosity and interconnectivity. The realization of the ideal values of these parameters represents the main goal of this work: here we'll a create simple and interactive biomimetic design process based on 3D CAD modeling and generative algorithmsthat provide a way to control the main properties and to create a structure morphologically similar to the cancellous bone. Two different typologies of scaffold will be compared: the first is based on Triply Periodic MinimalSurface (T.P.M.S.) whose basic crystalline geometries are nowadays used for Bone TE scaffolding; the second is based on using Voronoi's diagrams and they are more often used in the design of decorations and jewellery for their capacity to decompose and tasselate a volumetric space using an heterogeneous spatial distribution (often frequent in nature). In this work, we will show how to manipulate the main properties (pore diameter, structure porosity and interconnectivity) of the design TE oriented scaffolding using the implementation of generative algorithms: "bringing back the nature to the nature".