2 resultados para Pelvic limb

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present thesis was to investigate the influence of lower-limb joint models on musculoskeletal model predictions during gait. We started our analysis by using a baseline model, i.e., the state-of-the-art lower-limb model (spherical joint at the hip and hinge joints at the knee and ankle) created from MRI of a healthy subject in the Medical Technology Laboratory of the Rizzoli Orthopaedic Institute. We varied the models of knee and ankle joints, including: knee- and ankle joints with mean instantaneous axis of rotation, universal joint at the ankle, scaled-generic-derived planar knee, subject-specific planar knee model, subject-specific planar ankle model, spherical knee, spherical ankle. The joint model combinations corresponding to 10 musculoskeletal models were implemented into a typical inverse dynamics problem, including inverse kinematics, inverse dynamics, static optimization and joint reaction analysis algorithms solved using the OpenSim software to calculate joint angles, joint moments, muscle forces and activations, joint reaction forces during 5 walking trials. The predicted muscle activations were qualitatively compared to experimental EMG, to evaluate the accuracy of model predictions. Planar joint at the knee, universal joint at the ankle and spherical joints at the knee and at the ankle produced appreciable variations in model predictions during gait trials. The planar knee joint model reduced the discrepancy between the predicted activation of the Rectus Femoris and the EMG (with respect to the baseline model), and the reduced peak knee reaction force was considered more accurate. The use of the universal joint, with the introduction of the subtalar joint, worsened the muscle activation agreement with the EMG, and increased ankle and knee reaction forces were predicted. The spherical joints, in particular at the knee, worsened the muscle activation agreement with the EMG. A substantial increase of joint reaction forces at all joints was predicted despite of the good agreement in joint kinematics with those of the baseline model. The introduction of the universal joint had a negative effect on the model predictions. The cause of this discrepancy is likely to be found in the definition of the subtalar joint and thus, in the particular subject’s anthropometry, used to create the model and define the joint pose. We concluded that the implementation of complex joint models do not have marked effects on the joint reaction forces during gait. Computed results were similar in magnitude and in pattern to those reported in literature. Nonetheless, the introduction of planar joint model at the knee had positive effect upon the predictions, while the use of spherical joint at the knee and/or at the ankle is absolutely unadvisable, because it predicted unrealistic joint reaction forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Every day, firefighters are involved in emergency response tasks, which are both physically and psychologically exhausting. According to the National Fire Protection Association (NFPA), the number of firefighters who are injured or die while performing their job is incredibly high. When firefighters are injured, they must follow a rehabilitation therapy program to physically recover and depending on the severity of their injuries they may not fully recuperate at all. If they sustain a permanent injury that they cannot recover from, they may be out of work for the rest of their career. This research focuses on studying and developing a special device, known as an exoskeleton, aimed at assisting and preventing potential injuries among firefighters. Nowadays, the usage of human exoskeletons is becoming more common in a variety of fields. In fact, it is currently being researched and developed for soldiers, athletes, and critical care patients around the world. Most of the existing exoskeletons have been developed for the assistance of the lower human body. The research that I have done in my thesis instead relates to mobility of the upper body. Many of the existing exoskeletons have been analyzed and compared to each other and the human body, such as the study of human arm parts and their movements around three principal joints: shoulder, elbow, and wrist. The correct design of the shoulder exoskeleton join is still a big challenge for designers because of the complexity of biomechanical human movements. The exoskeleton must fit perfectly to the human body, otherwise it could be harmful for both the recovery and the safety of the user. The goal of this thesis is to design an upper-body arm exoskeleton worn by firefighters and develop and test a PID control system to prevent the risk of injuries while performing their job.