7 resultados para Peces de ríos
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Lo sviluppo hardware nel campo della robotica ha raggiunto negli ultimi anni livelli impressionanti ed è in continua crescita, e di pari passo si è espansa l’eterogeneità delle forme che può assumere, dalle tipologie basate su movimento a terra ai droni volanti, fino a forme più sofisticate di robot umanoidi che cercano di emularne il comportamento. Se da un lato ora possiamo disporre di hardware sempre più potente ed efficiente a costi sempre minori, dall’altro programmare il comportamento che un robot deve tenere nelle svariate circostanze in cui può imbattersi, nel poter portare a compimento il proprio obbiettivo, risulta essere sempre più complesso. Dopo una breve introduzione alla robotica e alle difficoltà che deve affrontare e una panoramica sui robot, cosa siano e come siano strutturati, fulcro della tesi sarà l’esposizione delle caratteristiche principali di ROS, Robot Operating System, come piattaforma di sviluppo software nel campo della robotica, e si concluderà con un semplice caso di studio in cui ne verrà messo in mostra concretamente l’utilizzo.
Resumo:
In this Bachelor Thesis I want to provide readers with tools and scripts for the control of a 7DOF manipulator, backed up by some theory of Robotics and Computer Science, in order to better contextualize the work done. In practice, we will see most common software, and developing environments, used to cope with our task: these include ROS, along with visual simulation by VREP and RVIZ, and an almost "stand-alone" ROS extension called MoveIt!, a very complete programming interface for trajectory planning and obstacle avoidance. As we will better appreciate and understand in the introduction chapter, the capability of detecting collision objects through a camera sensor, and re-plan to the desired end-effector pose, are not enough. In fact, this work is implemented in a more complex system, where recognition of particular objects is needed. Through a package of ROS and customized scripts, a detailed procedure will be provided on how to distinguish a particular object, retrieve its reference frame with respect to a known one, and then allow navigation to that target. Together with technical details, the aim is also to report working scripts and a specific appendix (A) you can refer to, if desiring to put things together.
Resumo:
The computer controlled screwdriver is a modern technique to perform automatic screwing/unscrewing operations.The main focus is to study the integration of the computer controlled screwdriver for Robotic manufacturing in the ROS environment.This thesis describes a concept of automatic screwing mechanism composed by universal robots, in which one arm of the robot is for inserting cables and the other is for screwing the cables on the control panel switch gear box. So far this mechanism is carried out by human operators and is a fairly complex one to perform, due to the multiple cables and connections involved. It's for this reason that an automatic cabling and screwing process would be highly preferred within automotive/automation industries. A study is carried out to analyze the difficulties currently faced and a controller based algorithm is developed to replace the manual human efforts using universal robots, thereby allowing robot arms to insert the cables and screw them onto the control panel switch gear box. Experiments were conducted to evaluate the insertion and screwing strategy, which shows the result of inserting and screwing cables on the control panel switch gearbox precisely.
Resumo:
Trying to explain to a robot what to do is a difficult undertaking, and only specific types of people have been able to do so far, such as programmers or operators who have learned how to use controllers to communicate with a robot. My internship's goal was to create and develop a framework that would make that easier. The system uses deep learning techniques to recognize a set of hand gestures, both static and dynamic. Then, based on the gesture, it sends a command to a robot. To be as generic as feasible, the communication is implemented using Robot Operating System (ROS). Furthermore, users can add new recognizable gestures and link them to new robot actions; a finite state automaton enforces the users' input verification and correct action sequence. Finally, the users can create and utilize a macro to describe a sequence of actions performable by a robot.
Resumo:
The paper deals with the integration of ROS, in the proprietary environment of the Marchesini Group company, for the control of industrial robotic systems. The basic tools of this open-source software are deeply studied to model a full proprietary Pick and Place manipulator inside it, and to develop custom ROS nodes to calculate trajectories; speaking of which, the URDF format is the standard to represent robots in ROS and the motion planning framework MoveIt offers user-friendly high-level methods. The communication between ROS and the Marchesini control architecture is established using the OPC UA standard; the tasks computed are transmitted offline to the PLC, supervisor controller of the physical robot, because the performances of the protocol don’t allow any kind of active control by ROS. Once the data are completely stored at the Marchesini side, the industrial PC makes the real robot execute a trajectory computed by MoveIt, so that it replicates the behaviour of the simulated manipulator in Rviz. Multiple experiments are performed to evaluate in detail the potential of ROS in the planning of movements for the company proprietary robots. The project ends with a small study regarding the use of ROS as a simulation platform. First, it is necessary to understand how a robotic application of the company can be reproduced in the Gazebo real world simulator. Then, a ROS node extracts information and examines the simulated robot behaviour, through the subscription to specific topics.
Resumo:
L’Industria 4.0 richiede sempre più tecnologie con un notevole grado di flessibilità, in modo da garantire il più alto livello di integrazione uomo-macchina e macchina- macchina. In quest’ottica, l’avvento della robotica collaborativa, ha agevolato il pro- cesso. I robot collaborativi (cobot) possono essere facilmente installati all’interno del- le linee di assemblaggio/produzione, senza necessità di barriere che vietino l’accesso agli operatori. Tra i tanti compiti a cui possono asservire i cobot, ci sono quelli dedica- ti all’ispezione delle varie macchine (e.g. microfermate di emergenza), in cui di solito, l’apertura del pannello di protezione è affidata ad un cobot montato a bordo di un AGV. È in questo contesto che si inserisce l’elaborato di tesi, volto al controllo in forza di un robot collaborativo per la movimentazione di un pannello di protezione di una mac- china automatica. In particolare, per ragioni logistiche e di ingombro, un simulacro del pannello di protezione è stato realizzato in scala, mentre il controllo real-time del cobot è stato implementato utilizzando ROS (Robot Operating System), piattaforma disponibile in modalità open-source.
Resumo:
L’elaborato di tesi discute del progetto di integrazione tra ROS 2, framework open-source per lo sviluppo di applicazioni robotiche, e VxWorks, sistema operativo in tempo reale (RTOS), attraverso l’utilizzo di container OCI compliant su VxWorks. L’integrazione è stata svolta all’interno dello stack software di IMA (Industria Macchine Automatiche). Il progetto ha dunque integrato ROS 2 Humble e VxWorks 7 permettendo l’utilizzo di costrutti software di ROS 2 su dei container in esecuzione a livello User su VxWorks. Successivamente è stata creata una applicazione di pick and place con un robot antropomorfo (Universal Robots Ur5e) avvalendosi di ROS 2 Control, framework per l’introduzione e gestione di hardware e controllori, e MoveIt 2, framework per incorporare algoritmi di motion-planning, cinematica, controllo e navigazione. Una volta progettata l’applicazione, il sistema è stato integrato all’interno dell’architettura di controllo di IMA. L’architettura a container VxWorks di IMA è stata estesa per il caso ROS 2, la comunicazione tra campo e applicazione ROS 2 è passata tramite il master EtherCAT e il modulo WebServer presenti nell’architettura IMA. Una volta eseguito il container ROS 2 posizione e velocità dei servo motori sono stati inviati tramite al WebServer di IMA sfruttando la comunicazione VLAN interna. Una volta ricevuto il messaggio, il WebServer si è occupato di trasferirlo al master EtherCAT che in aggiunta si è occupato anche di ottenere le informazioni sullo stato attuale del robot. L’intero progetto è stato sviluppato in prima battuta in ambiente di simulazione per validarne l’architettura. Successivamente si è passati all’installazione in ambiente embedded grazie all’ausilio di IPC sui quali è stato testato l’effettivo funzionamento dell’integrazione all’interno dell’architettura IMA.